

FOCAS IFU

Reduction software manual

August 31, 2023

1. Installation

FOCAS IFU reduction software uses Python. It is confirmed to work under both Python

2 and 3.

1.1. Required Linux libraries

Before installing PyRAF, you need to install following Linux libraries.

⚫ Xlib

⚫ Tcl

⚫ Tk

⚫ Tkinter.

For Ubuntu, you can install the following command.

apt install libx11-dev tcl-dev tk-dev python-tk

1.2. Required python modules

The reduction software has been confirmed to work well under the environments shown

in Table 1.

Table 1. Python versions and the module versions.

Python 2.7.12 3.6.7

NumPy 1.14.2 1.13.3

SciPy 1.0.1 0.19.1

matplotlib 2.2.2 2.1.1

Astropy 2.0.5 3.0

Astro-SCRAPPY 1.0.8 1.0.5

stsci.tools 3.4.11 3.4.12

PyRAF 2.1.14 2.1.14

Photutils 0.4 0.4

In Ubuntu 16.04, PyRAF for Python 3 cannot be installed, but it for Python 2 can be

install with the following command.

pip install numpy, scipy, matplotlib, astropy, astroscrappy, stsci.tools==3.4.11,

photutils

Note: In Ubuntu 16.04, stsci.tools can be installed only for 3.4.11, and not for >=3.4.12.

So, you have to install the specific version like above.

http://www.numpy.org/
http://www.numpy.org/
https://www.scipy.org/
https://www.scipy.org/
https://matplotlib.org/
https://matplotlib.org/
http://www.astropy.org/
http://www.astropy.org/
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
https://stscitools.readthedocs.io/en/latest/
https://stscitools.readthedocs.io/en/latest/
http://www.stsci.edu/institute/software_hardware/pyraf/
http://www.stsci.edu/institute/software_hardware/pyraf/
https://photutils.readthedocs.io/en/stable/
https://photutils.readthedocs.io/en/stable/

In Ubuntu 18.04, all of the modules for both Python 2 and 3 can be installed from the

Ubuntu package manager. But their versions tend to be slightly older than those

installed with pip.

To improve smoothness of the PyRAF graphics, set the following environment variable.

setenv PYRAFGRAPHICS matplotlib

1.3. IRAF

IRAF is also needed for the software.

In Ubuntu 18.04, it is also available as a part of Ubuntu packages. Note that the IRAF

install directory is “/usr/lib/iraf/” in this case, and the environment variable of “iraf”

should be set to the directrory.

setenv iraf /usr/lib/ira/

1.4. Installation of FOCAS IFU reduction software

⚫ Download FOCASIFU.tar.gz from the following URL.

 https://www2.nao.ac.jp/~shinobuozaki/focasifu/software.html

⚫ Decompress it in a desired directory. The directory tree is shown in Figure 1.

Figure 1. Directory tree

➢ “scripts” directory contains python scripts for the reduction.

➢ “lib” directory contains some data referred by the reduction scripts.

➢ “doc” directory contains this manual.

➢ “maintenance” directory contains some scripts for maintenance of this

reduction software. Users usually do not need to use them.

⚫ Add the path of “FOCASIFU/scripts” to the “PATH” environment variable.

F OCASIFU scripts

lib

doc

maintenance

http://iraf.noao.edu/
http://iraf.noao.edu/
https://www2.nao.ac.jp/~shinobuozaki/focasifu/software.html
https://www2.nao.ac.jp/~shinobuozaki/focasifu/software.html

2. Data

FOCAS has two CCDs, and each data consists of two FITS files for the two CCDs. These

two files have the name with odd and even frame ID numbers (for example,

FCSA01234567.fits and FCSA01234568.fits). In this manual, FCSA01234567 or

FCSA01234568 is called as the frame ID.

Figure 2. Obtained image with FOACS IFU.

Data cube FITS files created by this software have the following format.

NAXIS1: slice length direction

NAXIS2: another spatial direction perpendicular to NAXIS1

NAXIS3: wavelength direction

Figure 3. Reconstructed image.

3. Reduction flow

Typical procedure is as follows.

1. First of all, create template bias images using mkbiastemplate.py.

2. Reduce dome flat images using domeflat.py.

3. Reduce CAL flat images for both object and standard star using calflat.py.

4. Reduce comparison images for both object and standard star using comparison.py.

5. Reduce standard star images using standardstar.py.

6. Reduce object images using object.py.

7. Make an error data cube for the object using objecterr.py.

3.1. Examples of the commands

Bias template

mkbiastemplate.py FCSA00200797.fits -d ../20180302/

Dome flat domeflat.py

FCSA00200723.fits,FCSA00200725.fits,FCSA00200727.fits,FCSA00200729.fits,FCSA0

0200731.fits -d ../20180302/

CAL flat for object

calflat.py FCSA00201317.fits,FCSA00201319.fits,FCSA00201321.fits -d ../20180302/

CAL flat for standard star

calflat.py FCSA00200939.fits,FCSA00200941.fits,FCSA00200943.fits -d ../20180302/

Comparison for object

comparison.py FCSA00201315.fits FCSA00201317 -d ../20180302/

Comparison for standard star

comparison.py FCSA00200987.fits FCSA00200939 -d ../20180302/

Standard star

NOTE: FCSA00200721 is the Frame ID of the comparison image for dome flat. This #

image does not need to be processed by comparison.py.

standardstar.py FCSA00200903.fits FCSA00200723 FCSA00200939 FCSA00200721

FCSA00200987 -d ../20180302/

Object

NOTE: FCSA00200721 is the Frame ID of the comparison image for dome flat. This #

image does not need to be processed by comparison.py.

object.py FCSA00201303.fits FCSA00200723 FCSA00201317

 FCSA00201315 FCSA00200721 FCSA00200903 -d ../20180302/

4. Scripts

All scripts have two same options, “-h” and “-o”.

-h : Display a help screen.

-o : Overwritten output files.

All low-level scripts check whether the output files already exit or not. If exits, the scripts

are skipped. If you want to apply a certain script again, you must remove or rename the

output file beforehand.

4.1. High-level scripts

4.1.1. domeflat.py

USAGE: domeflat.py [-h] [-o] [-d RAWDATADIR] [-ql] <FITS files>

ARGUMENT

FITS files: Comma-separated file names of dome flat images. OPTION

-d RAWDATADIR: Raw data directory

-ql: Quick look mode

OUTPUT

XXXX.ov.fits : bias-structed and overscan-region-removed image

XXXX.fcmb.fits : combined flat image

XXXX.fcmb_low.fits: low spatial frequency image

XXXX.fcmb_high.fits : high spatial frequency image

(XXXXX is the frame ID of the input file.)

This script is for dome-flat images and applies the following low-level scripts;

bias_overscan.py, flat_combine.py, and divhighlow.py. You have only to input FITS files

with odd-number frame IDs. The script deduces FITS file names with even-number

frame IDs. See descriptions about each script for more details.

When “-ql” option is attached, this script runs in a quick look mode. This mode skips high

and low spatial frequency decomposition for a dome flat image because it takes long time.

This is usually used in the observation run.

Figure 4. Script structure of domeflat.py.

4.1.2. calflat.py

USAGE: calflat.py [-h] [-o] [-d RAWDATADIR] <FITS files>

ARGUMENT

FITS files: Comma-separated file names of CAL flat images. OPTION

-d RAWDATADIR: Raw data directory

OUTPUT

XXXX.ov.fits : bias-structed and overscan-region-removed image

XXXX.fcmb.fits : combined flat image

idXXXX.fcmb : spectrum gap location database in “database” directory

XXXX.fcmb_gapcoef : coefficient database for spectrum gap position

XXXX.chNNedge.fits : edge-enhanced images in “chimages” directrory.

idXXXX.chNNedge : edge location database in “chimages/database” directory.

idXXXX.ch12edge_org : edge location database for Ch12 in “chimages/database”

directory only for VPH650 data.

fcXXXX.chNNedge : spatial coordinate transform function database in

“chimages/database” directory

(XXXXX is the frame ID of the input file, and NN is the channel number.)

This script is for CAL-flat images and applies the following low-level scripts;

bias_overscan.py, flat_combine.py, identify_gap.py, fit_gap_coordinate.py,

mkedgeimage.py, identify_edge.py, correct_ch12_edge.py only for VPH650 data, and

fitcoord_edge.py. You have only to input FITS files with odd-number frame IDs. The

script deduces FITS file names with even-number frame IDs. See descriptions about each

script for more details.

Figure 5. Script structure of calflat.py.

4.1.3. comparison.py

USAGE: comparison.py [-h] [-o] [d RAWDATADIR] [-ql] <FITS files> <CAL flat ID>

ARGUMENT

FITS files: Comma-separated file names of comparison images.

CAL flat ID: Frame ID of the CAL flat image created by calflat.py.

OPTION

-d RAWDATADIR: Raw data directory

-ql: Quick look mode

OUTPUT

XXXX.ov.fits : bias-structed and overscan-region-removed image

XXXX.chNN.fits : each spectrum image in “chimages” directrory

idXXXX.chNN : emission line location database after bad point elimination in

 “chimages/database” directory

idXXXX.chNN.org : original emission line location database in

 “chimages/database” directory

fcXXXX.chNN : wavelength coordinate transform function in

“chimages/database” directory

(XXXXX is the frame ID of the input file, and NN is the channel number.)

This script is for comparison images and applies the following low-level scripts;

bias_overscan.py, mkchimage.py, identify_dispersion.py, rmidpoints.py,

fitcoord_dispersion.py, transform.py, mkcube.py, and get_sky_shift.py. You have only to

input FITS files with odd-number frame IDs. The script deduces FITS file names with

even-number frame IDs. See descriptions about each script for more details.

When “-ql” option is attached, this script runs in a quick look mode. This mode skips

derivation of the wavelength difference between sky and object spectra because it takes

long time. This is usually used in the observation run.

Figure 6. Script structure of comparison.py.

4.1.4. standardstar.py

USAGE: standardstar.py [-h] [-o] [-d RAWDATADIR] <FITS file> <Dome flat ID>

<CAL flat ID> < Comparison ID for object flat>

< Comparison ID for dome flat>

ARGUMENT

FITS file: Object image

Dome flat ID: Frame ID of the dome flat image combined by domeflat.py.

CAL flat ID: Frame ID of the combined CAL flat image created by calflat.py.

Comparison ID for object flat: Frame ID of the comparison image for object

processed by comparison.py.

Comparison ID for dome flat: Frame ID of the comparison image for dome flat.

This image does not need to be processed by comparison.py.

OPTION

-d RAWDATADIR: Raw data directory

OUTPUT

XXXX.ov.fits : bias-structed and overscan-region-removed image

XXXX.cr.fits and XXXX.mask.fits : cosmic-ray-removed image and mask image

XXXX.ff.fits : flat-fielded image

XXXX.chNN.fits : each spectrum image in “chimages” directrory

XXXX.chNN.wc.fits : transformed images in “chimages” directrory

XXXX.xyl.fits : data cube

XXXX.ss.fits : sky-subtracted data cube

XXXX.1dspec.fits : 1D spectrum of the standard star

XXXX.std : standard star database

XXXX.sens.fits : sensitivity function image

This script is for an standard star image and applies the following low-level scripts;

bias_overscan.py, cosmicrays.py, flatfielding.py, mkchimage.py, transcorm.py,

mkcube.py, skysub.py, std1dspec.py and standard_sens.py. You have only to input a

FITS file with an odd-number frame ID. The script deduces a FITS file name with an

even-number frame ID. See descriptions about each script for more details.

Figure 7. Script structure of standard.py.

4.1.5. object.py

USAGE: object.py [-h] [-o] [d RAWDATADIR] [-domecompid DOMECOMPID]

[-stdstarid STDSTARID] [-ql] <FITS file> <Dome flat ID>

<CAL flat ID> < Comparison ID for object flat>

ARGUMENT

FITS file: Object image

Dome flat ID: Frame ID of the dome flat image combined by domeflat.py.

CAL flat ID: Frame ID of the combined CAL flat image created by calflat.py.

Comparison ID for object flat: Frame ID of the comparison image for object

processed by comparison.py.

OPTION

-domecompid DOMECOMPID: Frame ID of the comparison image for dome flat.

This image does not need to be processed by comparison.py.

-stdstarid STDSTARID: Frame ID of the standard star image.

-d RAWDATADIR: Raw data directory

-ql: Quick look mode

OUTPUT

XXXX.ov.fits : bias-structed and overscan-region-removed image

XXXX.cr.fits and XXXX.mask.fits : cosmic-ray-removed image and mask image

XXXX.ff.fits : flat-fielded image

XXXX.chNN.fits : each spectrum image in “chimages” directrory

XXXX.chNN.wc.fits : transformed images in “chimages” directrory

XXXX.xyl.fits : data cube

XXXX.ss.fits : sky-subtracted data cube

XXXX.fc.fits : flux-calibrated data cube

This script is for an object image and applies the following low-level scripts;

bias_overscan.py, cosmicrays.py, flatfielding.py, mkchimage.py, transform.py,

fluxcalib.py, mkcube.py, skysub.py and skysub_old.py. You have only to input a FITS file

with an odd-number frame ID. The script deduces a FITS file name with an even-number

frame ID. See descriptions about each script for more details.

In a sky subtraction process, this uses skysub_old.py for old data using the old sky slit.

When “-ql” option is attached, this script runs in a quick look mode. This mode does not

use high and low spatial frequency flat images (see also domeflat.py). This is usually

used in the observation run.

Figure 8. Script structure of object.py.

4.1.6. objecterr.py

USAGA: objecterr.py [-h] [-domecompid DOMECOMPID] [-stdstarid STDSTARID]

[-d RAWDATADIR] [-o] [-ql] <Object FITS file> <Bias FITS file>

<Dome flat ID> <CAL flat ID> < Comparison ID for object flat>

ARGUMENT

Object FITS file: Object image

Bias FITS file: Bias image

Dome flat ID: Frame ID of the dome flat image combined by domeflat.py.

CAL flat ID: Frame ID of the combined CAL flat image created by calflat.py.

Comparison ID for object flat: Frame ID of the comparison image for object

processed by comparison.py.

OPTION

-domecompid DOMECOMPID: Frame ID of the comparison image for dome flat.

This image does not need to be processed by comparison.py.

-stdstarid STDSTARID: Frame ID of the standard star image.

-d RAWDATADIR: Raw data directory

-ql: Quick look mode

This script is for creating an error data cube and applies the following low-level scripts:

bias_overscan.py, cosmicrays.py, errorestimate.py, flatfielding.py, mkchimage.py,

transform.py, fluxcalib.py, and mkcube.py. You have only to input a FITS file with an

odd-number frame ID. The script deduces a FITS file name with an even-number frame

ID. See descriptions about each script for more details. You should use same arguments

and options as those for object.py.

When “-ql” option is attached, this script runs in a quick look mode. This mode does not

use high and low spatial frequency flat images (see also domeflat.py).

Figure 9. Script structure of objecterr.py.

4.2. Low-level script

4.2.1. bias_overscan.py

Usage: bias_overscan.py [-h] [-o] [-d RAWDATADIR] [-bo] <FITS file>

ARGUMENT

FITS file: Input FITS file with an odd-number frame ID OPTION

-d RAWDATADIR: Raw data directory

-bo: Upper overscan region of the input FITS file is used for the bias subtraction

instead of the bias template files.

OUTPUT

XXXXX.ov.fits (XXXXX is the frame ID of the input file.)

This script

⚫ subtracts the bias,

⚫ removes the over scan regions,

⚫ converts the unit from ADUs to electrons,

⚫ corrects the bad pixels, and

⚫ merges the two images for two CCDs into one image.

You have only to input one FITS file with an odd-number frame ID. The script deduces

another FITS file name with an even-number frame ID. Unless the option -bo is not used,

this needs the bias template files created by mkbiastemplate.py. If you can find the

systematic noise after bias subtraction reported here, please use this option.

4.2.2. correct_ch12_edge.py

USAGE: correct_ch12_edge.py [-h] [-o] <CAL flat ID>

ARGUMENT

CAL flat ID: Frame ID of the CAL flat image combined by flat_combine.py.

OUTPUT

idXXXX.ch12edge and idXXXX.ch12edge_org in “chimages/database” directory

(XXXXX is the frame ID of the input file, and NN is the channel number.)

When VPH650 is used, the left edge of the Ch12 spectrum is in the gap between the two

CCDs. This script corrects the left edge position data detected in identify_edge.py. The

left edge position is estimated from the spectrum width interpolated from other channels

and the detected Ch12 right edge. This renames the old id-file to “idXXXX.ch12edge_org”

and creates a new id-file, “idXXXX.ch12edge.” This is not needed for the other grisms.

https://www2.nao.ac.jp/~shinobuozaki/focasifu/issue/issue20230831.html

4.2.3. cosmicrays.py

USAGE: cosmicrays.py [-h] [-o] [-sigclip SIGCLIP] [-sigfrac SIGFRAC]

[-niter NITER] <FITS file>

ARGUMENT

FITS file: Input FITS file name

OPTION

 -sigclip SIGCLIP: Laplacian-to-noise limit for cosmic ray detection. (default:

5.0)

-sigfrac SIGFRAC: Fractional detection limit for neighboring pixels. (default:

0.4)

 -niter NITER: Number of iterations of the LA Cosmic algorithm to perform.

(default: 4)

OUTPUT

XXXX.cr.fits and XXXX.mask.fits

(XXXXX is the frame ID of the input file)

This script removes cosmic rays and creates a mask image using the Python module,

Astro-SCRAPPY, based on the L.A.Cosmic algorithm (Pieter G. van Dokkum, 2001, PASP,

113, 1420). SIGCLIP, SIGFRAC and NITER are the options for Astro-SCRAPPY.

For more details about the options, see the Astro-SCRAPPY web page.

4.2.4. divhighlow.py

Usage: divhighlow.py [-h] [-o] <FITS file>

ARGUMENT

FITS file: Dome flat files combined using flat_combine.py.

OUTPUT

XXXX.fcmb_low.fits and XXXX.fcmb_high.fits

(XXXXX is the frame ID of the input file.)

The Ch10 slice mirror has chips at the edge. These causes dark lanes in the Ch10

spectrum. The dark lanes move by some pixels due to flexure. To correct the dark lanes

https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
http://iopscience.iop.org/article/10.1086/323894
http://iopscience.iop.org/article/10.1086/323894
http://iopscience.iop.org/article/10.1086/323894
http://iopscience.iop.org/article/10.1086/323894
http://iopscience.iop.org/article/10.1086/323894
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy
https://github.com/astropy/astroscrappy

as well as pixel-to-pixel efficiency variation in a flat fielding procedure, a flat image must

be decomposed into two components; One is a component moving due to the flexure, and

the other is a stationary component. The former will be shifted before it is used in a flat

fielding process.

This script decomposes a dome flat image into the two components. This takes time. For

reducing the time, multi-processing using all CPUs is used. For example, the time is

about 8 minutes for one 2x1 binning data with Intel Xeon E5-1650 v3 processor having

6 cores.

4.2.5. errorestimate.py

USAGE: errestimate.py [-h] [-d RAWDATADIR] [-o] <Object FITS file> <Bias FITS file>

ARGUMENT

Object FITS file: Object image after cosmic ray removing.

Bias FITS file: Bias image

OUTPUT

XXXX.er.fits: Error image (XXXXX is the frame ID of the object FITS file.)

This script creates an error image. Photon noise and readout noise are estimated from

the object and bias images, respectively.

4.2.6. fit_gap_coordinate.py

USAGE: fit_gap_coordinate.py [-h] [-o] <FITS file>

ARGUMENT

FITS file: CAL flat file combined using flat_combine.py.

OUTPUT

XXXX.fcmb_gapcoef (XXXXX is the frame ID of the input file.)

For spectrum extraction, gap positions identified using identify_gap.py are fitted with

2nd order Chebyshev polynomial function. In the fitting, 3-sigma clipping is applied. This

result is used in mkchimage.py and mkedgeimage.py. The identified positions and the

best fit functions are shown in the left panel of Figure 10. The fitting residuals are shown

in the right panel of Figure 10. Deviation within 1 pixel is acceptable. The clipped data

points are shown by cross marks. Color code shows difference of the gaps (Some cross

marks have different color from the assigned color for the gaps. This might be due to a

bug in plotting.). After checking the results, close the window to quit this script.

Figure 10.

4.2.7. fitcoord_dispersion.py

USAGE: fitcoord_dispersion.py [-h] [-o] <Frame IDs>

ARGUMENT

Frame IDs: Comma-separated frame IDs of the comparison FITS files.

OUTPUT

fcXXXX.chNN in “chimages/database” directory

(XXXXX is the frame ID of the input file, and NN is the channel number.)

This script creates wavelength coordinate transform functions using the IRAF

FITCOORDS task. In the default plot, horizontal axis is Y (dispersion direction). Change

it to X (spatial direction) pressing ‘x’, ‘x’, and then ‘r’ in the graphical window. Some data

points near the edges might largely deviate (Figure 11). Because those are near the

pseudo slit edges, eliminate them pressing ‘d’ near one of them and then ‘p’ or ‘x’. To fit

again, press ‘f ’ key (Figure 12). Go back to the default plow pressing ‘x’, ‘y’, and then ‘r’.

If some data points still significantly deviate, they should be also eliminated. To quit,

press ‘q’ key. See the IRAF manual for more details.

Figure 11.

Figure 12.

4.2.8. fitcoord_edge.py

USAGE: fitcoord_edge.py [-h] [-o] <FITS file>

ARGUMENT

FITS file: CAL flat files combined using flat_combine.py.

OUTPUT

fcXXXX.chNNedge in “chimages/database” directory

(XXXXX is the frame ID of the input file, and NN is the channel number.)

This script derives spatial coordinate transform functions using the IRAF FITCOORDS

task. In the default plot, horizontal axis is X (spatial direction) (Figure 13). Change it to

Y (dispersion direction) pressing ‘x’, ‘y’, and then ‘r’ in the graphical window. Some data

points near the Y edges might largely deviate (Figure 14). In that case, eliminate the

outermost points even if they do not seem to deviate. pressing ‘d’ near one of them and

then ‘y’. To fit again, press ‘f ’ key. If there are still largely deviating points, repeat the

above elimination procedure (Figure 15). To quit, press ‘q’ key. See the IRAF manual for

more details.

Figure 13.

Figure 14.

Figure 15.

4.2.9. flat_combine.py

Usage: flat_combine.py [-h] [-o] <FITS files>

ARGUMENT

FITS files: Comma-separated flat FITS files created by bias_overscan.py.

OUTPUT

XXXX.fcmb.fits (XXXX is the frame ID of the first input file.)

This script simply combines either dome or CAL flat images using the IRAS task

IMCOMBINE with the combine type of ’median’. See the IRAF manual for the more

details.

4.2.10. flatfielding.py

USAGE: flatfielding.py [-h] [-o] [-e] [-comp COMP] [-domecomp DOMECOMP]

<FITS file> <Dome flat ID> <CAL flat ID>

ARGUMENT

FITS file: Input FITS file name

Dome flat ID: Frame ID of the dome flat image combined by flat_combine.py.

CAL flat ID: Frame ID of the CAL flat image combined by flat_combine.py.

 OPTION

-comp COMP: Fram ID of the comparison image for object.

-domecomp DOMECOMP: Frame ID of the comparison image for dome flat.

-ql: Quick look mode

-e: Put this option for error estimation.

OUTPUT

 XXXX.ff.fits (XXXXX is the frame ID of the input file.)

This script performs flat fielding to the input image. An image shift along the X direction

is automatically derived from the cross-correlation between the dome flat and the CAL

flat (The CAL flat was always taken in the telescope position same as the object). A Y-

direction shift is also automatically calculated from the comparison images for the object

and the dome flat. The X and Y shifts are shown in plot windows (Figure 16 and Figure

17). After checking, close them.

When “-ql” option is attached, this script runs in a quick look mode. This mode does not

use high and low spatial frequency flat images (see also domeflat.py).

Figure 16. Plot for X shift check.

Figure 17. Plot for Y shift check. Right panel shows a magnified view.

4.2.11. fluxcalib.py

USAGE: fluxcalib.py [-h] [-o] <Input FITS file> <Sensitivity file>

ARGUMENT

Input FITS file: Input FITS file name to be calibrated.

Sensitivity file: Sensitivity function image created by standard_sens.py.

OUTPUT

 XXXX.fc.fits (XXXXX is the frame ID)

This script applies flux calibration to the data cube using the sensitivity function derived

by standard_sens.py.

4.2.12. get_sky_shift.py

USAGE: get_sky_shift.py [-h] [-o] [-ql] <Comparison ID>

ARGUMENT

Comparison ID: Frame ID of the comparison data cube.

OPTIONS

-ql: Quick look mode

OUTPUT

 XXXX.sky_shift.dat (XXXXX is the frame ID)

This script derives wavelength differences between a sky spectrum and object spectra of

each spaxel using the comparison data cube. Results can be plotted using

show_skyshift.py.

When the “-ql” option is attached, this script runs in a quick look mode and skips

derivation of difference between sky and object spectra.

4.2.13. identify_dispersion.py

USAGE: identify_dispersion.py [-h] [-o] <Frame IDs>

ARGUMENT

Frame IDs: Comma-separated frame IDs of the comparison FITS files.

OUTPUT

idXXXX.chNN in “chimages/database” directory

(XXXXX is the frame ID of the input file, and NN is the channel number.)

This script identifies emission line locations using the IRAF IDENTIFY and

REIDENTIFY tasks. An object frame with sky emission lines can be used. When the

number of frames except an object frame is 2, then the frame for bright lines is followed

by the one for faint lines in the argument. An object frame must be at last in the

argument. Emission lines are automatically identified. If some lines are not correctly

identified, manually identify them with comparing the reference figure shown in the

separated window.

comp_emis_position.py would be helpful for distinguishing what data points should be

removed.

4.2.14. identify_edge.py

USAGE: identify_edge.py [-h] [-o] <FITS file>

ARGUMENT

FITS file: CAL flat files combined using flat_combine.py.

OUTPUT

idXXXX.chNNedge in “chimages/database” directory.

(XXXXX is the frame ID of the input file, and NN is the channel number.)

This script identifies spectrum-edge locations using the IRAF IDENTIFY and

REIDENTIFY tasks for each channel. In the graphical window, press m-key at the two

edge-peak locations. In the plot, there are some peaks. You should select the inner peak

pair like Figure 18. After identifying two peaks, quite the IDENTIFY task with q-key.

The REIDENTIFY task starts right after that. If the data is for VPH650, then the left-

edge-position data of the Ch12 spectrum is automatically corrected (see

correct_ch12_edge.py).

Figure 18.

4.2.15. identify_gap.py

USAGE: identify_gap.py [-h] [-o] <FITS file>

ARGUMENT

FITS file: CAL flat file combined using flat_combine.py.

OUTPUT

id-files in “database” directory

This script identifies spectrum gap locations using the IRAF tasks, IDENTIFY and

REIDENTIFY. Figure 19 shows the PyRAF graphic window for identifying gaps. In the

window, press l-key to find the gap locations. The IRAF colon command “:label both”

shows the gap names in the window. The number of gaps to be found is 21. If some gaps

are not found, manually identify the positions using m-key. See the IRAF manual for the

details. The gap positions of Ch12-13 and Ch23-24 are not used in the following

procedure, so this script does not find these two gaps. After finding all gaps, quit the

IRAF IDENTIFY task by pressing q-key. The IRAF REIDENTIFY task automatically

starts.

Figure 19.

4.2.16. mkbiastemplate.py

USAGE: mkbiastemplate.py [-h] [-o] [-d RAWDATADIR] <FITS file>

ARGUMENT

FITS file: Input bias file name with an odd-number frame ID OPTION

-d RAWDATADIR: Raw data directory

OUTPUT

bias_template1.fits and bias_template2.fits

This script creates 1-D bias template integrating the bias image along Y direction. In the

integration, 4-sigma clipping is applied. You have only to input one FITS file with an odd-

number frame ID. The script deduces another FITS file name with an even-number

frame ID. This script must be run before bias subtraction.

4.2.17. mkchimage.py

USAGE: mkchimage.py [-h] [-o] [-e] <FITS file> <CAL flat ID>

ARGUMENT

FITS file: FITS file created by bias_overscan.py.

CAL flat ID: Frame ID of the relevant CAL flat image

OPTION

-e: Put this option for error estimation

OUTPUT

XXXX.chNN.fits in “chimages” directrory for a science data

XXXX.chNN.err.fits in “chimages” directrory for an error data

(XXXX is the frame ID of the input FITS file, and NN is the channel number.)

This script extracts each channel spectrum, and stores them in separated FITS files in

“chimages” directory. When estimating error, attach the -e option.

4.2.18. mkcube.py

USAGE: mkcube.py [-h] [-o] <Frame ID>

ARGUMENT

Frame ID: Frame ID of the object frame.

OUTPUT

 XXXX.xyl.fits (XXXXX is the frame ID)

This script creates a data cube from 24 extracted images, and added the WCS headers.

4.2.19. mkedgeimage.py

USAGE: mkedgeimage.py [-h] [-o] <FITS fits>

ARGUMENT

FITS file: CAL flat files combined using flat_combine.py.

OUTPUT

XXXX.chNNedge.fits in “chimages” directrory.

(XXXXX is the frame ID of the input file, and NN is the channel number.)

This script extracts each channel spectrum and creates edge-strengthen images. Since

Ver. 20210210, neighboring spectrum areas are not padded with zero because the 0-

padding causes slight uncertainty (< 1 spatial pixel ~ 0.2 arcsec by default) in defining

spectrum edges.

4.2.20. rmidpoints.py

USAGE: rmidpoints.py [-h] [-fac FAC] [-o] <Frame ID>

ARGUMENT

Frame ID: Comma-separated Frame IDs

-fac FAC: Threshold factor

OUTPUT

idXXXX.chNN.org

idXXXX.chNN

This script eliminates bad points in the database file, idXXXX.chNN, created by

identify_dispersion.py. The original id-file is renamed to idXXXX.chNN.org. When

intensity of a data point is lower by the threshold factor with respect to a neighboring

data point, the data point is eliminated. After the elimination, this shows the following

figure for checking the result. Close this plot window to proceed the script.

Figure 20. Figure shown by rmidpoints.py. Data points identified by

identify_dispersion.py are overplotted on the corresponding comparison

image with log scale. Red points show eliminated ones.

4.2.21. skysub.py

USAGE: skysub.py [-h] [-o] [-scale SCALE] <FITS file> <Comparison ID>

ARGUMENT

FITS file: Input FITS file name of the data cube created by mkcube.py.

Comparison ID: Frame ID of the comparison image. OPTIONS

-scale SCALE: Scale factor applied for the sky spectrum. (default: 1.0)

OUTPUT

 XXXX.ss.fits (XXXXX is the frame ID)

This script is applied for data since August 2021 because those data were obtained with

the new sky slit. This script subtracts the sky spectrum from the data cube. The sky

spectrum is created by integrating the Ch24 (sky) spectrum. The sky slit has graded

width. The width is narrower for larger X coordinate. The sky spectrum is scaled by

SCALE. The scaled sky spectrum is shifted for each object spaxel along the dispersion

direction by the value derived with get_sky_shift.py.

4.2.22. skysub_old.py

USAGE: skysub_old.py [-h] [-o] [-x1 X1] [-x2 X2] [-scale SCALE]

<FITS file> <Comparison ID>

ARGUMENT

FITS file: Input FITS file name of the data cube created by mkcube.py.

Comparison ID: Frame ID of the comparison image. OPTIONS

-x1 X1: Start pixel for integrating the sky spectrum. (default: 53)

-x2 X2: End pixel for integrating the sky spectrum. (default: 62)

-scale SCALE: Scale factor applied for the sky spectrum. (default: 1.0)

OUTPUT

 XXXX.ss.fits (XXXXX is the frame ID)

This script is applied for the old data before July 2021 because those data were obtained

with the old sky slit. This script subtracts the sky spectrum from the data cube. The sky

spectrum is created by integrating the Ch24 (sky) spectrum from X1 to X2. The sky slit

has graded width. The width is narrower for larger X coordinate. The sky spectrum is

scaled by SCALE. The scaled sky spectrum is shifted for each object spaxel along the

dispersion direction by the value derived with get_sky_shift.py.

4.2.23. standard_sens.py

USAGE: standard_sens.py [-h] [-o] <FITS file>

ARGUMENT

FITS file: FITS file name of the 1D standard star spectrum made by

std1dspec.py.

OUTPUT

 XXXX.std and XXXX.sens.fits (XXXXX is the frame ID)

This script derives the sensitivity function using the IRAF STANDARD and SENSFUNC

tasks. STANDARD selects the bands used for deriving a sensitivity function (Figure 21).

‘d’ key is for deleting the band. SENSFUNC derives the sensitivity function (Figure 22).

Also, ‘d’ key is for deleting the points from the fitting. See the IRAF manual for more

details.

Around 9000 – 9500 Å, there is a bump in the sensitivity function. This originates from

the absorption feature in the dome flat. To fit this feature, high order function is required

in the fitting. In the case of Figure 22, the 50-order spline3 function is used. For such

high order fitting, CALSPEC is recommended because of the

dense spectral sampling. Some data converted to IRAF database format can be found in

the FOCAS web page. Please contact to the Subaru telescope for more detail.

Figure 21. Plot window of the IRAF STANDARD task.

Figure 22. Plot window of the IRAF SENSFUNC task.

http://www.stsci.edu/hst/observatory/crds/calspec.html
http://www.stsci.edu/hst/observatory/crds/calspec.html
https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spec/SpecStandard.html
https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spec/SpecStandard.html
https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spec/SpecStandard.html
https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spec/SpecStandard.html
https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spec/SpecStandard.html
https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spec/SpecStandard.html

4.2.24. std1dspec.py

USAGE: std1dspec.py [-h] [-o] [-startz STARTZ] [-nsigma NSIGMA] <FITS file>

ARGUMENT

FITS file: FITS file name of the data cube of the standard star.

OPTIONS

-startz STARTZ: Start Z pixel for aperture photometry. (default: 2000)

-nsigma NSIGMA: Number of sigma for the aperture size. (default: 5)

OUTPUT

 XXXX.1dspec.fits (XXXXX is the frame ID)

This script makes a 1D spectrum of the standard star. The procedure is as follows.

1) After an image at Z = STARTZ is shown (Figure 23 left), click around the star

center.

2) Standard deviations along X and Y directions are obtained applying 2D Gaussian

fitting.

3) A photometric aperture radius is set to NSIGMA times larger than the standard

deviations. And the aperture center is set at the 2D Gaussian center.

Figure 23.

4) The aperture is overlaid on the image (Figure 23 right). Check the aperture, and

close the graphic window.

5) The aperture center is recalculated at every wavelength pixel, and count values

are integrated within the aperture.

6) The 1D standard star spectrum is shown (Figure 24 left).

7) Specify the required wavelength range by pushing any key except ‘q’ at both ends

of the range (Figure 24 right). Including rapidly changing region causes difficulty

in deriving sensitivity function.

8) Close the plot window.

Figure 24.

4.2.25. transform.py

USAGE: transform.py [-h] [-o] <Frame ID> <Comparison ID> <CAL flat ID>

ARGUMENT

Frame ID: Frame ID of the object frame.

Comparison ID: Frame ID of the comparison frame.

CAL flat ID: Frame ID of the CAL flat image combined by flat_combine.py.

OUTPUT

XXXX.chNN.wc.fits

(XXXXX is the object frame ID, and NN is the channel number.)

This script transforms each channel spectrum to user coordinate using the wavelength

and spatial coordinate transform functions derived from fitcoord_dispersion.py and

fitcoord_edge.py, respectively. This uses the IRAF TRANSFORM task internally. NOTE:

Since Ver.20201003, blank pixels are not padded with NaN in this script. The function is

moved to the separate script, zero_padding.py.

5. Tools

5.1. comp_emis_position.py

usage: comp_emis_position.py [-h] ifnames

This is the script for checking the identified positions of the comparison lines. This is

helpful to distinguish what points should be removed in fitcoord_dispersion.py.

positional arguments:

 ifnames Comma-separated input FITS files

(e.g. FCSA00210597.ch12.fits,FCSA00210599.ch12.fits)

optional arguments:

 -h, --help show this help message and exit

Figure 25. Example.

5.2. implot.py

usage: implot.py [-h] [-c C] [-w W] [-flgx] [-flgy] files

This is the script for plotting lines and columns of images. If two or more files are given,

those are overplotted.

positional arguments:

 files Input FITS files (comma separated)

optional arguments:

 -h, --help show this help message and exit

 -c C Center coordinate (comma separated).

 -w W Center coordinate (comma separated).

 -flgx Plot along X axis.

 -flgy Plot along Y axis.

5.3. monoimage.py

USAGE: monoimage.py [-h] [-c1 CONTINUUM1 CONTINUUM1]

 [-c2 CONTINUUM2 CONTINUUM2] [-en EXTNUM]

 INCUBE OUTFITS ONBAND ONBAND

positional arguments:

 INCUBE Input data cube

 OUTFILE Output fits name

 ONBAND Start and end wavelengths of the on-band (A)

OPTIONS:

 -h, --help show this help message and exit

 -c1 CONTINUUM1 CONTINUUM1, --continuum1 CONTINUUM1 CONTINUUM1

 Continuum wavelength range of one side (A)

 -c2 CONTINUUM2 CONTINUUM2, --continuum2 CONTINUUM2 CONTINUUM2

 Continuum wavelength range of other side (A)

 -en EXTNUM, --extnum EXTNUM

 FITS extension number to be used. Dfault is 0.

This script creates an image by integrating over ONBAND. When CONTINUUM1 and

CONTINUUM2 are specified, the interpolated continuum level is subtracted.

5.4. show_skyshift.py

usage: show_skyshift.py [-h] [-vmin VMIN] [-vmax VMAX] infile

This is the script for showing sky shift derived with get_sky_shift.py.

positional arguments:

 infile Sky shift data file

optional arguments:

 -h, --help show this help message and exit

 -vmin VMIN Minimum value (default: None)

 -vmax VMAX Maximum value (default: None)

Figure 26

5.5. zero_padding.py

USAGE: zero_padding.py [-h] <Input cube>

ARGUMENT

 Input cube: Input data cube file name

This script replaces pixel values of 0.0 around the edge of the wavelength direction to

NaN. The input data cube is overwritten.

6. Citing and references

Please cite the following paper.

Ozaki, S. et al. 2020, Publications of the Astronomical Society of Japan, 72, 97

Other papers are listed below for reference.

Ozaki, S. et al. 2014, Proc. SPIE, 9151, 915149

Ozaki, S. et al. 2012, Proc. SPIE, 8450, 84501L

7. Contact

If you have any questions, please don't hesitate to ask.

https://academic.oup.com/pasj/article/72/6/97/5917514
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9151/1/Development-of-a-slicer-integral-field-unit-for-the-existing/10.1117/12.2054838.full?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9151/1/Development-of-a-slicer-integral-field-unit-for-the-existing/10.1117/12.2054838.full?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8450/84501L/Development-of-a-slicer-integral-field-unit-for-the-existing/10.1117/12.924959.full

8. Changelog

8.1. 20220817 => 20230831

⚫ bias_overscan.py was modified. The previous version showed a systematic error of a

few counts after the bias subtraction.

⚫ The new option -bo was added to bias_overscan.py to use an upper overscan region

for a bias subtraction instead of template bias files. See the detail here.

8.2. 20210818 => 20220817

⚫ New scripts (objecterr.py and errestimate.py) were introduced for creating an error

data cube thanks to Isobe-san’s contribution.

⚫ Some scripts were modified for the error estimation.

⚫ rmidpoints.py was newly implemented. This automatically eliminates most of bad

data points identified by identify_dispersion.py.

⚫ In the sky subtraction process, object.py uses the old script for old data before August

2021 because they used the old sky slit.

8.3. 20200210 => 20210818

⚫ This version was adapted to the new sky slit.

⚫ The option“ql” was implemented in some scripts.

⚫ This version was adapted to VPH680+SY47.

⚫ From this version, a data cube is trimmed after sky subtraction, and the wavelength

range becomes the one which is covered in the whole field of view.

8.4. 20201003 => 20210210

⚫ zero_padding.py is now executed at the end of object.py when users demand it.

⚫ In mkedgeimage.py, neighboring spectrum areas are not padded with 0 to avoid slight

uncertainty (< 1 spatial pixel ~ 0.2 arcsec by default) of defining spectrum edges.

⚫ Explanations of comp_emis_position.py and show_skyshift.py are added in this

manual.

8.5. 20200213 => 20201003

⚫ Sky subtraction method has been modified to decrease residuals of sky emission lines.

In the new method, wavelength deviations between a sky spectrum and object spectra

of each spaxel are derived from a comparison data. For this purpose, a comparison

data cube is created.

⚫ Previously, blank pixels around spectrum edges are padded with NaN in

transform.py (see section 8.3). Now this function is moved to the separate script,

zero_padding.py.

https://www2.nao.ac.jp/~shinobuozaki/focasifu/issue/issue20230831.html

8.6. No version number change

⚫ Incorrect descriptions about the arguments for standardstar.py and object.py have

been corrected. There was no description about the required argument, “Comparison

ID for dome flat”, in the previous manual.

8.7. 20200210 => 20200213

⚫ In transform.py, blank pixels are padded with NaN. In the previous version, they are

padded with 0.

⚫ After flux calibration, unit has been changed from ergs/s/cm2/A to 1E-20 ergs/s/cm2/A.

Because of this change, Auto Plot 3D function of SAO image ds9 works well.

8.8. 20190621 => 20200210

⚫ “os.path.join” has been used to add a path to a file name.

⚫ In fitcoord_dispersion.py, xorder and yorder have been changed from 7,7 to 5,3.

⚫ In terms of WCS, only the CD matrix has been used. In the previous version, both

the CD matrix and the CDELT keywords were included in the FITS header.

⚫ Some minor bugs have been fixed.

⚫ In Section 4.2.6, the explanation has been slightly changed, and Figure 11 and Figure

12 have been changed.

⚫ In this manual, figure numbers have been corrected.

8.9. 20200210 => 20210818

⚫ This version was adapted to the new sky slit.

⚫ The option “-ql” was implemented in some scripts.

⚫ This version was adapted to VPH680+SY47.

⚫ From this version, a data cube is trimmed after sky subtraction, and the wavelength

range becomes the one which is covered in the whole field of view.

