Imaging Exoplanets with Advanced High Contrast Imaging Instrumentation on Large OIR Telescopes

Olivier Guyon University of Arizona Subaru Telescope NINS Astrobiology Center (Japan)

Spectacular discoveries around nearby stars

Trappist-1 system 7 planets ~3 in hab zone likely rocky 40 ly away

Proxima Cen b planet Possibly habitable

Closest star to our solar system (only 4.2 light years away)

Why should we image planets ?

Imaging allows spectroscopy to measure atmosphere composition

Spectrum of Earth (taken by looking at Earthshine) shows evidence for life and plants

Taking images of habitable exoplanets: Why is it so hard?

Saturn

Adaptive Optics

. -

Subaru Telescope (8.2m diameter) has an exoplanet-imaging instrument (SCExAO) The instrument team is developing advanced Extreme-AO techniques

Subaru Telescope, Mauna Kea, Hawaii 4200m altitude Very clear sky **Best snow in Hawaii Regular size door**

Subaru Coronagraphic Extreme Adaptive Optics すばるコロナグラフ極限補償光学装置

Imaging exoplanets requires 3 techniques to be combined:
(1) Extreme-AO corrects atmospheric turbulence
(2) A coronagraph masks the light of the bright star
(3) Smart image processing to recognize planets

Simulated images below show how Extreme-AO and Coronagraphy deliver high contrast image of a star 1: ExAO control radius 2: Telescope spider diffraction 3: Diffraction rings 4: Ghost spider diffraction 5: "butterfly" wind effect 6: Coronagraphic leak (low order aberrations)

Monochromatic PSFs, 1.65um No photon noise 10m/s wind speed, single layer 4ms wavefront control lag

Raw on-sky image Subaru Telescope/SCExAO

HR8799 system (b,c,d) Subaru Telescope/SCExAO

Pyramid WFS

On-sky camera images (snapshot)

SCExAO example Visible image (left), NearIR image (center), Visible pyramid WFS (right)

Star: Sigma Ori, 0.3" separation

AO loop runs at 0.5 kHz to 3.5 kHz 14,400 sensors \rightarrow 2000 actuators

Achieves visible light diffraction limit under good seeing (750nm PSF shown here)

Capella 36mas separation

HR8799 system

Four planets, orbital periods on the order of 100yr Each planet 5 to 7 Jupiter Mass

> The central bright star is missing from the image: it has been successfully blocked by our optics, and removed by image processing

AB Aur b protoplanet

Planet is still forming from gravitational collapse of gas cloud Mass ~ 9x Jupiter

ARTICLES

NATURE ASTRONOMY

Subaru Telescope/ SCExAO (T. Currie et al. 2022)

Thirty Meter Telescope

Giant Magellan Telescope

European Extremely Large Telescope

Contrast and Angular separation

Contrast and Angular separation

TMT Planetary Systems Imager (PSI)

Northern Hemisphere Broad wavelength coverage & spectroscopy

AO & Infrastructure Upgrades at Subaru Telescope

Major upgrades are bringing SCExAO closer to TMT-PSI

Upgrades to 1st stage AO correction will boost performance:

[spring 2023] 1st stage Deformable Mirror: 188 elements \rightarrow 3228 elements Validating DM technology envisioned for TMT-PSI

[spring 2023] Adding high-order NearIR wavefront sensing

[late 2023] Adding 1st stage high order visible WFS

Infrastructure:

[2024] Beam switcher \rightarrow easier operation + supports advanced modes

[2023+] Laser tomographic AO \rightarrow access to fainter sources

[2026+] Adaptive Secondary Mirror

Advanced Control Techniques for Extreme AO

Phase Diversity / Curvature WFS: Reconstruction Simulation

20,000 ph total: $609nm \rightarrow 34.4nm RMS$

non-linear Curvature WFS: AO loop Simulation

Computer Simulations showing contrast gain with high sensitivity WFS (non-linear curvature)

LOOP OFF	SH, D/d = 60 Loop frequency = 140 Hz	SH, D/d = 36 Loop frequency = 160 Hz
1537 nm RMS	227 nm RMS	183 nm RMS
SH, D/d = 18 Loop frequency = 180 Hz	SH, D/d = 9 Loop frequency = 180 Hz	nlC, limit = 16 CPA Loop frequency = 260 Hz
		0
195 nm RMS	315 nm RMS	101 nm RMS

Predictive Control and Sensor Fusion

Conventional AO: <u>Measured</u> RM/CM

Advanced AO control:

Using past measurements (predictive control) and other measurements (sensor fusion) \rightarrow control matrix is very big, and usually impossible to measure

We derive CM from WFS(s) telemetry

Machine Learning based predictive control First on-sky results (2 kHz, 50 sec update) → 2.5x raw contrast improvement

OFF (integrator, gain=0.2)

Improved Image Stability

OFF (integrator, gain=0.2)

Standard deviation of F1 consecutives 0 Fe improve (26 see eveneours) 2 mp enert

ON

Using Focal Plane Image for AO

-2.5

-3.0

-3.5

-4.0

-4.5

- -5.0

-5.5

-6.0

-6.5

Electric Field Conjugation (K. Ahn, 2021)

Improving Image Quality by "Learning" from Focal Plane Image

Evolution of the on-sky PSF before running the algorithm, after the first iteration, and the after last iteration. Each image is 0.25 arcsec (40x40 pixels) across, acquired at λ = 750 nm, 30 sec exposure time (computed by co-addition of 15,000 frames acquired at 500 Hz)

Self-Calibrating High Contrast Imaging

Principle

Why is Post-processing calibration better than AO control ?

Encouraging work: Neural Net PSF reconstruction

Credit: Barnaby Norris & Alison Wong

Experimental validation (lab)

1550nm, 25nm BW, Lyot Coronagraph, 7 kHz frame rate

UNCALIBRATED

CALIBRATED

30x gain in speckle variance

UNCALIBRATED

CALIBRATED

Average dark removed)

Photonic Nulling

Interferometric WFSs

Credit: S. Vievard and V. Deo

On-sky demonstration of interferometric WFS \rightarrow provides path to high sensitivity chromatic WF measurement

Integrated-photonics concept for high-contrast imaging

Measurement and order-sorting is performed via an energy-resolving MKIDS detector.

This injects the light into a nulling chip.

A telescope pupil is injected into a pupil-remapping chip via an on-chip 3-D-printed microlens array.

The output is spectrally dispersed at high spectral resolution via an arrayed-waveguide-grating-based photonic spectrograph.

On-chip active modulation allows the null to be carefully tracked by dynamically adjusting optical path length. Key advantages:

Access to very small separation (better than coronagraphy)

High sensitivity wavefront sensing integrated within chip

Spectroscopy at output

Illustration by Phil Saunders

"Astrophotonics: The Rise of Integrated Photonics in Astronomy" Norris & Bland-Hawthorn. Optics and Photonics News (2019) https://www.osa-opn.org/home/articles/volume_30/may_2019/features/astrophotonics_the_rise_of_integrated_photonics_in/

GLINT module @ Subaru/SCExAO

GLINT module @ Subaru/SCExAO

Null output: starlight is almost completely removed by destructive interference, providing deep contrast. This is where planet light and spectra are extracted

Fringe tracking output: Bright starlight interference efficiently encode residual small (nm-level) optical aberration

Feed this information in real-time to upstream deformable mirror for correction

Use this information to calibrate how much starlight is left in null outputs

Scalable photonic-based nulling interferometry with the dispersed multi-baseline GLINT instrument" Martinod, Norris, Tuthill...Guyon et al. **Nature Communications (2021)** link: <u>https://www.nature.com/articles/s41467-021-22769-x</u>

GLINT – on-sky Alpha Boo

1.4 kHz frame rate

Conclusions

We are already on the path to imaging habitable planets with 30m-class telescopes. Habitable planets around nearby M and K type stars are most accessible for imaging and spectroscopy. Spectra will be acquired in visible and NearIR.

SCExAO is leading the way in prototyping key technologies on this path – and enabling new science along the way. Rapidly evolving technology landscape – important to keep up and validate on-sky.

SCExAO is an open research platform \rightarrow please consider joining/collaborating Email me at: guyon@naoj.org