

Future and International Collaboration of Subaru Telescope

Michitoshi Yoshida Director, Subaru Telescope National Astronomical Observatory of Japan

Subaru Telescope and Its Instruments

Subaru Telescope

- 8.2m optical infrared reflecting telescope operated by National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS)
- ♦ Science operation: 2000 present

Subaru has four foci

 Wide field observation capability using the prime focus is a unique point of Subaru.

2020/1/16

Subaru has wide field observation capability

M31 image taken with HSC

Field-of-view of Hyper Suprime-Cam of Subaru

9 times as large as the apparent size of the moon

Field-of-view of TMT

Field-of-view of Prime Focus Spectrograph

> Field-of-view of Keck DEIMOS 2020/1/16

Instrument Suit of Subaru

♦ facility instruments

- ♦ Optical wide field camera: HSC [Pr]
- ♦ Optical camera and spectrograph: FOCAS [Cs]
- ♦ Optical high dispersion spectrograph: HDS [Ns]
- ♦ Near-infrared multi-object spectrograph: MOIRCS [Cs]
- ♦ Near-infrared camera and spectrograph: IRCS [Ns]
- ♦ Mid-infrared camera and spectrograph: COMICS [Cs]
- ♦ visiting instruments (PI-type)
 - Near-infrared high-dispersion spectrograph: IRD [Coude]
 - Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) [Ns]
 [Ns]
 - ♦ Extreme adaptive optics: SCExAO [Ns]
- \diamond adaptive optics
 - ♦ Adaptive optics system: AO188 [Ns]

Hyper Suprime-Cam (HSC)

FOV: 1.7 degree² 104 CCDs → 830 million pixels Pixel scale: 0.17 arcsec Wavelength range: 0.4 – 1.0 µm

Employees of Subaru Telescope in Hawaii (88 employees) (+ 26 in Mitaka)

Subaru Strategic Programs

- Exceptionally large project using unique/expedient instruments of Subaru Telescope
- ♦ HSC SSP (2014 2020) 300+30 nights ongoing

IRD SSP (2019 - 2025) 70 (+100) nights ongoing

 Search for Planets like Earth around Late-M Dwarfs: Precise Radial Velocity Survey with IRD"

♦ PFS SSP (2022 - 2027?) 300 - 360 nights in preparation

♦ Large international PFS collaboration

Number of Publications

Instrumentation of Subaru

12

Subaru Instrumentation

Wide field (1.3 deg) multi object (2,400) spectroscopy

Precise radial velocity $(2m/s)^{2020/1/16}$ measurement

Wide field (1.5 deg)

AA Available volume (25.00) (25.00) (27.22 (25.0) (

ULTIMATE-Subaru Wide field (20 arcmin) high spatial resolution (0.2 arcsec) Infrared observation

New Instrument

IRD (InfraRed Doppler spectrograph)

- ♦ A fiber fed high-dispersion (R=70,000) NIR spectrograph with laser frequency comb → precision of radial velocity measurement ~2 m/s in H-band
- Detection of earth-like mass planets around M-dwarfs
- ♦ Science operation started in S18B.
- ♦ SSP started in S19A.

PFS (Prime Focus Spectrograph)

(under development; science operation from 2022)

A fiber fed multi-object spectrograph attached to the prime focus of Subaru

2,400 fibers FOV: 1.25 deg² λ range: 0.38 – 1.26 μ m Spec. R: 2,300 – 5,000

Sensitivity

Band magnitude		
Blue (0.38 – 0.65 μm)	22.5	
Red (0.65 – 0.97 µm)	22.4	
NIR (0.97 – 1.26 μm)	21.4	

S/N = 5 @ 1 hour exposure

PFS collaboration 7 countries, 23 institutions

- Systems engineering is clearly the key.
- Parts/components/subsystem will be validated at each site before their delivery tooother places for higher-level integration & finally to Subaru.

PFS Installation Timeline

ULTIMATE-Subaru

(preliminary design phase)

Wide field near-infrared observation facility using ground layer adaptive optics (GLAO) system

Science Operation: 2026

International Collab.: Taiwan (ASIAA), Australia (ANU), (Canada (NCU))

> Wide Field Nearinfrared Instruments

ULTIMATE-Subaru High-Res "AND" Wide-Field NIR Capabilities

ULTIMATE-Subaru will deliver:

- Subaru's original High-redshift targets to follow-up with TMT
- Spatially-resolved studies of the objects found by HSC/PFS
- **SDSS-like** comprehensive imaging/spec. survey for **high-redshift universe** (z>2).
- Synergy with the future surveys by wide-field space missions (good synergy with WFIRST)

Subaru wide-field capabilities in 2020s

HSC (operational)	Optical (0.38 – 1.1 um) FoV 1.7 deg2	Seeing limited (> 0.4") Imager	Limiting mag. with 1h exp.	Band g r i z	mag 27.8 27.2 26.5 25.9
PFS (2022 -)	Optical – J-band (0.38 – 1.26 um) FoV 1.3 deg2	2,400 fibers 1.05" φ Multi-object sp. 0.38 – 1.26 um	Limiting mag. with 1h exp. Band mag Blue (0.38 - 0.65 μ m) 22.5 Red (0.65 - 0.97 μ m) 22.4 NIR (0.97 - 1.26 μ m) 21.4		
ULTIMATE (2026 -)	Near-Infrared (0.9 – 2.5 um) FoV 20' φ	GLAO supported 0.2" resolution (in K-band) Imager (14'x14') Multi-object sp. (w/ MOIRCS) IFU sp.	Limiting mag. using GLAO with 4h exp.	Band J H Ks NB1340	mag 26.3 25.5 26.4 26.1

International Collaboration

2020/1/16

23

International collaboration on Subaru instrumentation

- Several collaborations on instrumentation
 - ♦ SCExAO : Japan, US, Australia, etc.
 - ♦ HSC : Japan, US, and Taiwan
 - ♦ PFS : Japan, US, France, Taiwan, Brazil, Germany, and China
 - ♦ IRD : Japan, US, Canada, Poland, Sweden, and Germany
 - & ULTIMATE : Japan, Taiwan, Australia, and Canada

International Partnership

- It is getting more difficult for Subaru to financially sustain its operation even though the scientific value of the telescope is still very high.
 - ♦ It is required for Subaru to make its operation cost lower.
 - ♦ Japanese government has been asking Subaru to look for international partners who can operate the telescope together.
 - ♦ Discussions on international partnership with partner candidate coutries are under way.
 - ♦ Partner candidates:

⊗India

- ♦ East Asian Observatories

Subaru – India Meeting on International Partnership 9/9 – 10 @Bangalore, India

Agenda:

- Subaru Telescope Facility (Yoshida)
- HSC and ongoing planned projects at Subaru (Miyazaki)
- PFS, ULTIMATE, and instrument decommissioning plan (Yoshida & Miyazaki)
- Subaru Partnership (Sekiguchi)
- Discussion on plan & time scales from Indian side
- Discussion on the Subaru meeting @ TIFR in December 2019

- ♦ Dec. 18 20 @ Tata Institute of Fundamental Research (TIFR), Mumbai, India
- ♦ About 75 people participated in the workshop
- Subaru India partnership, Indian instrumentation for Subaru : Executive session between NAOJ representatives (DG, Sekiguchi, Miyazaki, Minowa, and Yoshida) and Directors of Indian astronomical institutions (8 institutes) was held.
- Science cases: cosmology, galaxy formation, nearby galaxies, Milky²¹ dy⁶,⁶ time²⁷ domain, star & planet formation, exoplanets, Solar system

Thank you

•