ADVANCED TECHNOLOGIES IN KAGRA; -LARGE-SCALE CRYOGENIC GRAVITATIONAL WAVE TELESCOPE-

16, Jan., 2020 The 39th Symposium on Engineering in Astronomy **Takayuki TOMARU** GW Science Project, NAOJ

	GraceDD - Gravit	acional-wave	canuida	te Byent Dat	abase
HOME	PUBLIC ALERTS SEARCH LATES	T DOCUMENTATION			LOGIN
JGO/Virgo O3 Public Alerts			https://gracedb.ligo.org/		
Detection c	andidates: 41				
ORT: EVENT ID	(A-2) *				
Event ID	Possible Source (Probability)	UTC	GCN	Location	FAR
<u>5191216ap</u>	MassCap (>9990	Dec. 16, 2019 21:33:38 UTC	GCN Circulars Notices 1 YDE	()	1 per 2.8035e+15 years
<u>5191215w</u>	BBH (>9990	Dec. 15, 2019 22:30:52 UTC	GON Circulars Notices VOE		1 per 31.485 years
5191213aj	NSBH (85%), Terrestrial (15%)	Dec. 13, 2019 15:59:05 UTC	GCN Ormalians Notices VOE	•	1 per 1.5816 years
<u>5191213q</u>	BNS (77%), Terrestrial (23%)	Dec. 13, 2019 04:34:08 UTC	GEN Circulars Notices VDE	9.5	1.1197 per year
<u>5191212a</u>	Terrestrial (5130, NSBH (4980	Dec. 12, 2019 08:27:28 UTC	GCN Circulats Notices YOE		1.0631 per year
5191205ab	NSBH (9350, Terrestrial (750	Dec. 5, 2019 21:52:08 UTC	GCN Circulars Notices YOE	005	1 per 2.5383 years

Masses in the Stellar Graveyard

<u>Jntil O2</u>

- BBH : 10
- BNS : 1
- (Candidates at 2020.Jan.15)
- BBH : 29
- BNS : 5
- NSBH : 5
- Undefined : 6

about 1 event/week

<u>GW Amplitude</u>

Strong > EM >> Week >> $\cdot \cdot \cdot$ >> Gravity ~ 0.1 ~ 0.01 ~ 10⁻⁵ ~ -10⁻³⁸

We need to detect gravitational wave amplitude of the order of 10⁻²⁴ (displacement of 10⁻²⁴m /1m) to do GW astronomy because gravity interaction is pretty small. $10^{-24} = 2 \frac{10}{2} \frac{10}{24} = 2 \frac{10}{2} \frac{10}{24} \frac{10}{24} = 10^{-24} \frac{10}{24} \frac$

Principle of GW Measurement by Michelson Interferometer

When length difference between both interferometer arms are occurred by GW, leakage of light will be dropped onto CCD.

Practical 2nd Generation GW Telescope

Principle Sensitivity Limitations of Interferometric GW Telescope

Seismic Noise (< 10 Hz)

Cryogenic Mirror System

AGRA

Underground

Vibration Attenuation

Observation band of GW telescopes: dozens – kilo Heltz We need small vibration only at this band.

Pendulum & Spring consist a good mechanical low-pass filter

To achieve sufficient vibration attenuation at observation band, we need to make vibration attenuator with the resonance at low frequency.

1Hz pendulum = 25cm
0.1Hz pendulum = 25m

Resonant frequency of pendulum depends on only its length.

Ideas of compact Vibration Attenuator with low frequency

*精密工学会誌76,2010,*p1225 Ryutaro Takahashi

KAGRA Main Mirror Suspension System

Frame-Free Suspension

We excavate upper-floors and vertical holes for Vibration Isolation System. Base of the VIS is put on the upper-floor

Cryogenic part

Bottom Floor

Agin mirror positions

4-stage GAS filters @ room temperature

Duct Shield

Arm tunnel

Main Cryostat

Upper Floor

14m

Principle Sensitivity Limitations of Interferometric GW Telescope

Cryogenic Mirror Suspension

Temperature

Thermal Noise

We found that single crystalline sapphire has very small acoustic loss at cryogenic temperature

Single Crystalline Sapphire Bulk

Sapphire @ 20K

 $x(\omega)^2 \propto \sqrt{2}$

Typical value of acoustic loss Of sapphire at room temp. is $\sim 10^{-6}$

But We need to make this complex structure with monolithic sapphire condition to reduce thermal noise of the mirror suspension system.

Acoustic loss

Hydroxide-Catalysis Bonding

Very strong oxide-crystal contact

NaOH, KOH, Na₂SiO₃ \rightarrow kind of water glass

Semi-monolithic sapphire suspension

- Need high quality polish on contact surfaces, typically $\lambda/10 \sim \lambda/5$
- Don't need to heat treatment
- Mechanical strength is comparable with crystal itself.
- This bonding technology was developed for SiO2 contacts. But we confirmed that this is applied to other oxidized materials (We confirmed to bond for Alumina and Stainless steel.)
- HCB keeps sufficient strength even at cryogenic temperature.
- Its acoustic loss is not so small.

Ultra-low Vibration 4K-Cryocooler System

T. Tomaru et. al., Cryocoolers 13, (2005) 695-702

C. Tokoku et al., AIP Conference Proceedings 1573, 1254 (2014)

Rotary-Valve Unit

Very Soft 6N Al Stranded Cable as Heat-link

Thin wire

 $(\phi 0.15 \text{ mm})$

By T. Yamada

Spring constant of stranded Cable is smaller than single $k = \frac{P^2}{N}$. Wire.

Size effect dominates conductivity

Stranded-cable type heat link (ϕ 0.15 mm \times 7 \times 7 \times 7)

7-wire strand

 $(\phi 0.15 \text{ mm} \times 7)$

49-wire strand

 $(\phi 0.15 \text{ mm} \times 7 \times 7)$

• Result (Resonant frequency)

	Area	5N	6N	
ϕ 1mm single	0.8 mm ²	64 Hz	64 Hz	
45 wires strand	0.8 mm ²	9.6 Hz	9.8 Hz	
		$k \propto$	f^2 1	/6.5

Spring constant: 1/43

Observation Network for Gravitational Wave

Event Localization

75°

-75°

60°

20^h

-60°

45°

22^h

-45°

30°

15°

0°

-15°

-30°

 Improvement of precision of Luminosity Distance

18^h 16^h 14^h 12^h 10^h

- Investigation of event distribution
- Improvement of successful detection by Follow-up observation

L

8^h

KAGRA: 2.5nd Generation GW Detector

Einstein Telescope (Europe), 10km Collaboration **KAGRA** Upgrade in Near Future Ĩ Technologies Cosmic Explorer (USA), 40km 10km scale **Asian Telescope?**

Internationalization?

Did you really understand my talk?

Should be no problem

Domestic Group Scientists

English

Oversea Group Scientists

Large issue is internal domestic group In the case of GW Science Project Scientist: Japanese & non-Japanese **Engineer:** Only Japanese Technician: no Student: Japanese & non-Japanese Office worker: Only Japanese but fluent English speaker

To do fundamental improvement, we need long-term education from young age. We need to expect improvement of Japanese education system

It is not so easy to have good Communication in English

Hydroxide-Catalysis Bonding

非常に強い結晶接合 Very strong oxide-crystal contact

水ガラスの一種

NaOH, KOH, Na₂SiO₃ \rightarrow kind of water glass

Semi-monolithic sapphire suspension

高精度の表面研磨が必要。典型的にはλ/10~λ/5

- Need high quality polish on contact surfaces, typically $\lambda/10 \sim \lambda/5$
- Don't need to heat treatment 熱処理不要

bonding to the Si atom

- Mechanical strength is comparable with crystal itself.
- This bonding technology was developed for SiO2 contacts. But we confirmed that this is applied to other oxidized materials (We confirmed to bond for Alumina and Stainless steel.)
- HCB keeps sufficient strength even at cryogenic temperature.
- Its acoustic loss is not so small. 機械的損失は大きい。

強度は結晶そのもの と同程度

> 他の酸化物・ 酸化皮膜を持つ 材料にも使える 極低温でも使える

My idea is to use both Japanese and English Especially in e-mail. 特にemail! アイデアとしては日本語と英語両方を使う 例えば書く人が2倍の時間を使っても Writer/Speaker Even if he/she spends twice time みんなの時間が50% 節約出来れば 50% time saving 50% time saving 50% time saving 50% time saving Reader Reader Reader Reader

We can expect large efficiency in total

全体としての効率は非常に大きい。

And above all, most important thing is to understand discussion by everyone. なにより、みんなが理解出来ることが一番大事。