
To Rust or Not To Rust: JVOでの経験経験
ザパート・クリストファー

(特任専門職員、天文データセンター、国立天文台、三鷹、日本データセンター、国立天文データセンター、国立天文台、三鷹、日本台、三鷹、日本)

概要
At the Japanese Virtual Observatory we have experimented with the Rust

programming language. Rust promises the following benefits: improved stability,

memory safety and "fearless concurrency". The existing FITSWebQL server

software has been ported from C/C++ to Rust. We have found improved

performance in some places, mainly thanks to better CPU load balancing of the

Rust rayon data parallelism library compared with C/C++ OpenMP. The use of an

integrated HTTP/WebSockets actix-web networking library in Rust has made it

possible to offer more responsive streaming downloads of partial FITS cut-outs.

Apart from performance, the clear advantage of Rust over C/C++ is its superior

stability and reliability in a 24-hour server environment. The Rust programming

language itself also results in programs containing fewer bugs.

1. Introduction

The FITS WebQL server software in operation at the Japanese Virtual Observatory, NAOJ, enables

users to view even over 100GB-large FITS files in a web browser running on a PC with a limited

amount of RAM, without ever having to download the underlying FITS files. Users can

interactively zoom-in to selected areas of interest with the corresponding frequency spectrum

being calculated on the server in near real-time. After previewing FITS files users may choose to

download interesting FITS files either in whole or to stream a partial region-of-interest (cut-out)

from the JVO server to their own computers. The client itself (a browser) is a JavaScript application

built on WebSockets, WebAssembly, HTML5, WebGL and SVG (shown in 図 1). In 2018 the current

version 4 - completely re-written from scratch in the Rust programming language – had been

released, featuring real-time streaming videos of individual frequency channels from FITS data

cubes. The service can be accessed from the JVO Portal, found at https://jvo.nao.ac.jp/portal/top-

page.do . The latest version 4 of the software (which includes the standalone personal desktop

edition) is also freely available for download from the following GitHub repository:

https://github.com/jvo203/fits_web_ql .

https://jvo.nao.ac.jp/portal/top-page.do
https://jvo.nao.ac.jp/portal/top-page.do
https://github.com/jvo203/fits_web_ql

2. Why Rust?

The new version 4 initially started as a small feasibility study to find how easy it would be to re-

implement the server part of FITSWebQLv3 in Rust. Another reason for doing a Rust re-write was

the need to clean up the original C/C++ code as it has grown too complex to follow and too

difficult to add new functionality. There are good reasons for switching from C/C++ to a new

systems programming language such as Rust as it brings important benefits such as memory

safety (no memory leaks, dangling pointers), thread safety (no data races), better (smoother) multi-

threading (“fearless concurrency”) compared with OpenMP in C/C++ and a complete lack of

segmentation faults (no crashes) due to inherent safety measures built into the Rust language. It

is certainly possible to write C/C++ programs that are free of memory leaks and do not crash but

from a programmer's standpoint Rust makes accomplishing these tasks much easier, all without

sacrificing performance. Although the so-called standard “safe” Rust does not crash by itself in the

face of programming errors (out-of-bounds array accesses etc.), when using the “unsafe”

keyword to call external C/C++ libraries Rust cannot prevent bugs/data races present (potentially)

in those external dependencies from hard-crashing the main Rust program. One needs to be very

careful in the choice of external C/C++/Fortran libraries to call from Rust. However, this should not

count as a disadvantage in comparison with C/C++ since those same buggy external libraries

would cause the same segmentation faults if called from an equivalent C/C++/Fortran program.

As an example, the C/C++ FITSWebQL versions 2 and 3 were launched on the server from within

an infinite loop in a bash script that would quickly spawn a FITSWebQL process in case of a

segmentation fault:

 図 1: A client-server architecture of FITSWebQLv4.

#!/bin/sh

while [1]; do

 DATE=$(date +"%Y%m%d%H%M%S")

 cd /home/chris/FITSWebQL

 ./almawebql 1>logs/${DATE}.log 2>logs/${DATE}.err

done

This was especially useful during an early phase when not all rarely-triggered-but-critical

bugs/errors had been found yet (i.e. mmap causes a hard segmentation fault upon bus errors,

NFS mounts can go down due to network problems etc.). The Rust version 4 of FITSWebQL simply

does not need to be called in such a way from within an infinite loop since the code is much more

reliable.

Another important consideration in scientific computing is performance. Typically Rust programs

run nearly as fast as C/C++ and certainly much faster than Java. Unlike Java, Rust does not suffer

from any garbage collection freezes (like C/C++ there is no GC in Rust, memory is released as

soon as variables go out of scope), and it takes advantage of the jemalloc memory allocator that

is faster/more efficient compared with the default system memory allocator. Another excellent

feature of Rust is the integrated Cargo package manager that helps to keep track of different

versions of various external Rust package dependencies needed by a particular Rust program. It

is extremely easy to downgrade external dependencies in case there are issues with newer

versions. In contrast, working with traditional programming languages would involve manually

downloading/compiling an external dependency, dealing with library paths, long Java classpaths

etc. In Rust everything is handled automatically by Cargo.

3. C/C++ versus Rust feature comparison

C/C++ Rust

mutable by default (a const keyword is needed

to prevent accidental data manipulation)

immutable by default (all variables are

constants), an opt-in (let mut x = …) is needed

to enable subsequent writes

variables can be written to by another thread

without any synchronisation

threads/functions take ownership of variables

(only one owner at a time can write)

by default a lax compiler, beware of unexpected

compiler bugs

the Rust compiler (borrow checker) is extremely

strict; initially it may take a long time (mental

gymnastics) to get a code to compile

the compiler does not catch any common

memory bugs, a programmer needs to

maintain a high state of alertness at all times,

external memory-checking tools like valgrind

are needed

the strict compiler helps prevent many

common programming mistakes, dangling

pointers etc., resulting in safer programs with

fewer bugs

a fast auto-vectorized code either with the paid-

for Intel C/C++/Fortran compiler or a free Intel

SPMD Program Compiler https://ispc.github.io/

the default auto-vectorization can be hit-or-

miss, easy integration with the Intel SPMD

Program Compiler via a ispc-rs Rust crate

(package) https://github.com/Twinklebear/ispc-

rs

error/exception handling an after-thought; it is

easy to skip error checks during prototyping

and then omit/forget to add proper error

handling during production

forces a programmer to decide how to handle

errors at every step, resulting in more reliable

programs

excellent Parallel STL with C++17/20, easy

parallelism with OpenMP

excellent data parallelism library Rayon https://

github.com/rayon-rs/rayon

using OpenCL for GPGPU may be a bit

cumbersome (a lot of low-level plumbing)

low-level OpenCL complexity is hidden from the

end-user in an easy-to-follow Rust ocl crate

(package): https://github.com/cogciprocate/ocl

WebAssembly with Emscripten:

https://emscripten.org/

native WebAssembly (Wasm) support:

https://github.com/raphamorim/wasm-and-

rust

4. Final Remarks

 C/C++ offers the best overall performance but it does so at the price of potential memory bugs

and data races that can be difficult/time-consuming to debug, especially in a concurrent multi-

threading environment. A C/C++ programmer always needs to maintain at work a state of high

concentration to prevent introducing bugs. On the other hand, Rust offers stability and

performance with fewer bugs to start with. Learning Rust can often teach one to write better,

safer C/C++ and acquire good programming habits. Overall the experience with Rust at JVO has

been positive although the Rust compiler can be painful to work with initially. Especially when

learning Rust it is easy to “hit a wall” and get stuck, keep searching for a suitable solution for

several days. On a positive note, Rust offers excellent documentation and tutorials. New users are

encouraged to consult the “Rust Book” at https://doc.rust-lang.org/stable/book/ .

https://doc.rust-lang.org/stable/book/
https://emscripten.org/
https://github.com/raphamorim/wasm-and-rust
https://github.com/raphamorim/wasm-and-rust
https://github.com/cogciprocate/ocl
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon
https://github.com/Twinklebear/ispc-rs
https://github.com/Twinklebear/ispc-rs
https://ispc.github.io/

