ASTE 新3カートリッジデュワーの冷却性能試験

○佐藤直久, 稲田素子, 藤井泰範 (国立天文台先端技術センター) 浅山信一郎, 伊王野大介, 奥田武志 (国立天文台チリ観測所)

0. 概要

ASTE (Atacama Submillimeter Telescope Experiment アタカマサブミリ波 望遠鏡実験プロジェクト)の新3カートリッジデュワーは、ALMAで使用された ものと同じインターフェイスを持つ外径 φ 170mm のカートリッジ型受信機を3 台まで同時冷却可能なデュワーである(右写真 上:外観、下:内部写真、カ ートリッジ挿入状態)。このデュワーは2015年9月末に完成し、現在は先端技 術センターにおいて冷却性能試験を行なっている。現在までに、無負荷のカ ートリッジを3台搭載した状態でカートリッジの3段目ステージにおいて冷却 温度3Kを達成し、十分な冷却特性を持つことを確認できた。

ASTE新3カートリッジデュワー(以降は「新ASTEデュワー」と略す)と同様に、カートリッジ型受信機を3台冷却できるデュワーは過去に2台製作されている。最初の1台は2000年にASTE用として製作されたものであり、2台目は百式と呼ばれ、ATF(ALMA Test Facility)の試作アンテナ搭載用として製作されたものである(以下「旧ASTEデュワー」「ATFデュワー」と称す)。新ASTEデュワーはこれらの後継機で3台目にあたる。これらのデュワーは基本的な構造は変わらないが細部に変更が加えられてきた。新ASTEデュワーではφ170mmカートリッジ3本搭載のためにデュワーの直径を拡張し、これらを対称位置に配置したことが変更の一つであるが、本シンポジウムでは冷却性能向上を目的として行ったセンターピラー周囲構造の見直しを中心に報告する。

1. 3カートリッジデュワーの内部構造(図1、図2参照)

デュワー内部は、3段式GM冷凍機により3種類の温度ステージを持ち、サーマルリンクによってカ ートリッジ型受信機と熱的にリンクしてそれを冷却する。1段目と2段目ステージの周囲からはそれぞ れの温度の輻射シールドが立ち上がり、外周および上方からの輻射遮りながら上方でセンターピラーに 固定される。センターピラーの中心には、デュワーを真空引きした際の構造的補強となるSUS製のセ ンターシャフトが通っており、デュワーによって構成は異なるが、センターシャフトからの熱輻射を軽 減させるためにインシュレーターパイプやセンターパイプを周囲に配置している。各温度ステージは3 本の支柱によって一段下の温度ステージから支えられ、かつ中央のセンターピラーにステージ支えを介 して固定されている。この「ステージ支え」はセンターピラーを締め付けることで固定されるために、 センターパイプと温度ステージは熱的によく接触している状態になる。

図1 3カートリッジデュワーの内部構造

図2 センターピラー詳細 (新ASTE)

2. 熱解析

新ASTE デュワーの構造を検討するにあたり旧2台のデュワーから改善できることを探したところ、 センターピラーから3段目温度ステージへの熱流入が温度ステージの冷え方に影響していることが推 測された(図4)。新ASTE デュワーではここを熱的に切り離すことを考え、これを定量的に確認する べく解析ソフトを用いた熱解析を行った。熱解析はカートリッジ型受信機と輻射シールドを省略して簡 略化したモデル(図5)に、3種類のセンターピラー構造をそれぞれ表現して行った。3つのデュワー の解析結果として3段目ステージへの総熱流入量を図6に示すが、新ASTE デュワーの3段目ステージ への総熱流入量は旧ASTE デュワーと比較して約220mW減少し、ATF デュワーからも約80mW減少するこ とがわかった。冷凍機の冷却能力が1Wであることから、これは決して小さな変化とは言えない。また、 解析結果詳細をまとめて図8(次ページに図と解説を掲載)に示すが、熱流束のコントアマップにおい て冷凍機熱リンクとセンターピラー間の熱流量が、センターピラー構造の変遷によって徐々に減ってお り、インシュレーターパイプの追加と、熱的切り離しの効果が表れていることが確認できる。

図4 センターピラー構造の変遷

モデル名	3 段目ステージへの 熱流入量[mW]
I∃ASTE	310
ATF	169
新ASTE	84.2
図6 解析約	吉果 (最終結果)

以上の解析結果により、新ASTEデュワーではセンターピラーと3 段目温度ステージを熱的に切り離す様な構造をとるように決定し た。しかしセンターピラーは温度ステージを固定することによって その水平方向の移動を拘束する役目を持っているため、機械的には 固定をして熱的には切り離すことを実現しなくてはならない。この ためステージ支え部品の内面に小さな突起を設けて、センターパイ プとの接触面積を大幅に減少させて、その効果をねらった(図7)。

図7 ステージ支えと突起 (3段目ステージ)

(図8 コントアマップの解説)

図8は、センターピラーの構造が異なる3タイプのデ ュワーについて、冷却時の熱流束の大きさをコントアマ ップで示したものである。3段目ステージ上で冷凍機と センターパイプの間の熱流束に注目すると、ほぼ同じ形 状と大きさの熱流束が見られる。しかし、このコントア マップは見易さのために、ある数値以上の熱流束のみを 表示しているおり(旧ASTEデュワーでは300W/m²以上、 ATFデュワーでは80W/m²2以上、新ASTEデュワーでは 30W/m²2以上を表示、冷凍機からセンターパイプへの熱 流束がほぼ同じ大きさに表示されるように調整)モデル が進化するにつれて熱流束が減少している事がわかる。 またこの解析結果によって、3段ステージに流入する熱 流量を積算しまとめたものが図6である。

3. 冷却性能試験

このデュワーで使用するカートリッジ型受信機の 熱負荷がどの程度許容できるか、判断材料となる基 礎的なデータを得るために冷却性能試験を行った。 3本のカートリッジ型受信機が挿入された運用時の 熱的負荷が高い状態を再現するために、熱伝導の負 荷としてカートリッジ型受信機の一つである ALMA BAND8 受信機を2台挿入し、残りのポートに負荷用の ヒーターと温度センサーを搭載した測定用カートリ ッジを挿入した(図9)。2段目および3段目のヒ ーター通電量を段階的に変化させて得られた測定結 果(例として1段目ステージが無負荷の場合)を図 10 に示す。図 10 の横軸は3 段目ステージ(4K)の温 度、縦軸は2段目ステージ(15K)の温度を示し、グ ラフ中の赤字は3段目ステージに対するヒーター負 荷、緑字は2段目ステージに対するヒーター負荷を 表す。これによりそれぞれの熱負荷に対する各ステ ージの到達温度を得ることができた。また、カート リッジが3本挿入されていて負荷の無い状態で3段 目ステージが3K まで冷却でき、このデュワーが十分 な冷却特性を持つことを確認できた。

図8 解析結果(コントアマップ)

図9 測定セット

図 10 冷却性能曲線例(1段目ステージ無負荷)

4. 解析結果と試験結果との比較

2の解析計算がどの程度実態を正しく表現しているか大ま かに確認するために、3段目温度ステージに流入する熱量につ いて解析結果と試験結果との比較を行った。

2の解析モデルでは15K 輻射シールドとカートリッジ型受信 機が表現されておらず、これによる熱流入量を手計算で求めて 解析結果と合算したところ熱流入量は合計で約160mW となっ た(図11)。

一方で冷却性能試験の測定結果から熱流入量を導いてみる。

・冷凍機 1W 負荷時 の Cold Head 温度は 4.27K(冷凍機出荷
時試験結果より)

・Cold Head とデュワー側ステージ温度差 0.2K(推測値)

・カートリッジ側とデュワー側ステージの温度差 0.6K (図 12 より)

上記の3条件と、図10の冷却性能曲線を補間することにより、ヒーター出力が800mW程度になると、冷凍機が1Wの負荷を受けた場合の温度まで上昇することがわかる。よって1W-800mW=200mWが試験結果から得られた3段目ステージ(4K)への熱流量となり、解析計算の結果160mWと比較して近い値を得ることができた。

図 11 解析と手計算結果を 合算した 3 段目ステージへの 熱流入量(単位[mW])

5. まとめ

・既存する3カートリッジデュワーの一部構造を変更し、冷却性能を向上させた。
また熱解析を行ってその効果を確認した。

・冷却性能試験を行い、このデュワーで使用するカートリッジ型受信機の熱的仕様を検討するための 基礎的なデータを得た。

・熱解析の妥当性を見るために解析結果と測定結果を比較検討した。 その結果完全な一致は得られなかったが近い値を得た。

今回、解析と測定を比較して近い値を得ることができたが、熱解析ではモデルに輻射シールドが表現 されてなく、測定においてもまだ改善していく余地がある。今後は熱解析、測定とも強化をして、より 精度の高い検討ができるようにしていきたい。

謝辞

本研究は JSPS 科研費 15H02074 の助成を受けたものです。