Basic Group

2025. 09. 25. - 26.

Kagoshima University

Aims & ...

- You can make your own image from the proposed/archive data.
 - You already found adequate ALMA data
 - Band (Frequencies)/ Beam sizes (configurations)
 - When No image product in archive
 - When you want to (slightly) modify the image
- Generally, there are NO Calibration issues because the issues are already checked by ARC (QA0-2 pass)
- Download ALMA data
 - → 1) Run the scriptForPI.py file & Restore the calibrated data
 - 2) Request the calibrated data to EA ARC via helpdesk
 - → Ready to imaging (tclean)

NRAO Synthesis Image Summer school/workshops.

https://web.cvent.com/event/90ae72df-7675-41b5-b056-48af11e1aa7f/summary


```
Dusies of Naulo Astronomy, Shace, Viaco (Dollinic Eugovici)
10:00 - 10:20
              Coffee Break
10:20 - 11:10 Antennas and receiver systems: Slides, Video (Jay Blanchard)
11:15 - 12:00 Fundamentals of radio interferometry I: Slides, Video (Rick Perley)
12:00 - 14:00 Lunch break (self-catered)
14:00 - 14:45 Fundamentals of radio interferometry II: Slides, Video (Rick Perley)
14:45 - 15:30 Basic radio interferometry - Geometry: Slides, Video (Rick Perley)
15:30 - 16:00 Coffee Break
16:00 - 17:10 Cross Correlators: Slides, Video (Adam Deller)
17:15 - 18:15 Discussion groups
18:30 - 20:00 Welcome Reception
Thursday, 16 May
08:00 - 09:00 Registration
09:00 - 10:00 Calibration: Slides, Video (Ian Heywood)
10:00 - 10:20 Coffee Break
              Introduction to imaging and deconvolution: Slides, Video (Joshua Marvil)
11:20 - 12:30 Advanced calibration: Slides, Video (Ian Heywood)
```

There are excellent lecture materials on interferometry available online, and if you want to gain a deeper understanding, I recommend watching the lectures

Previous Workshops

19th Synthesis Imaging Workshop (2023)

<u>Virtual 18th Synthesis Imaging Workshop</u> (2022)

<u>Virtual 17th Synthesis Imaging Workshop</u> (2020)

16th Synthesis Imaging Workshop (2018)

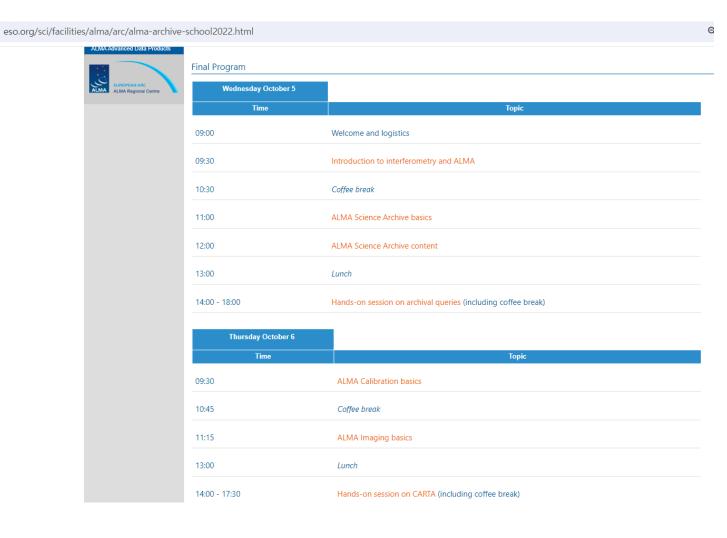
15th Synthesis Imaging Workshop (2016)

14th Synthesis Imaging Workshop (2014)

13th Synthesis Imaging Workshop (2012)

12th Synthesis Imaging Workshop (2010)

11th Synthesis Imaging Workshop (2008)


10th Synthesis Imaging Workshop (2006)

9th Synthesis Imaging Summer School (2004)

There are excellent lecture materials on interferometry available online, and if you want to gain a deeper understanding, I recommend watching the lectures

https://www.eso.org/sci/facilities/alma/arc/alma-archiveschool2022.html

References

There are excellent lecture materials on interferometry available online, and if you want to gain a deeper understanding, I recommend watching the lectures

Quick Basics for ALMA imaging process

- Scales
- Visibility data/ Dirty beam / Dirty Image ...
- Deconvolution (clean)
- Image parameter selection
 - Pixel size/image size
 - Weightings (Natural- Briggs Uniform)

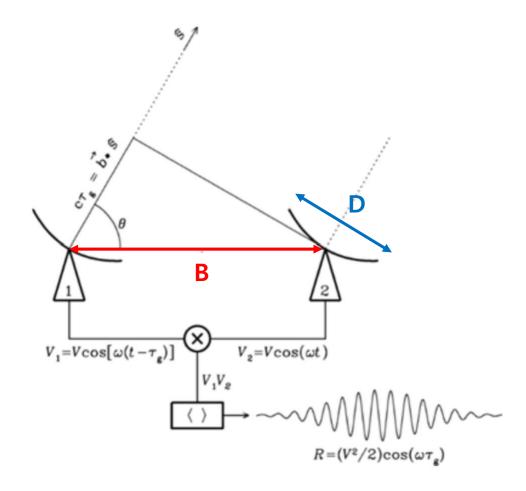
Scales

$$heta \sim rac{\lambda}{D(B)}$$

D : Diameter of telescope

B : Baseline; distance between antenna pair

Angular Resolution (beam size)


- depend on the longest baseline
- 0.2" x (300 GHz/Freq) x (1 km/longest baseline)

Maximum Recoverable Scale (MRS)

- depends on the shortest baseline ($\sim 10 \text{ x beam size}$)
- 1.4" x (300 GHz/Freq) x (150m/shortest baseline)
- When the emission is more extended than MRS, the emission is resolve out → multiple configuration or ACA and TP are added.

Field of View (FOV)

- FWHM of the 12m telescope primary beam
- ~19 arcsec (33 arcsec) @ 300 GHz for 12m (7m)
- Area of target is larger than 1/3 FOV, mosaic observation.

Scales

$$heta \sim rac{\lambda}{D(B)}$$

D : Diameter of telescope

B : Baseline; distance between antenna pair

Angular Resolution (beam size)

- depend on the longest baseline
- 0.2" x (300 GHz/Freq) x (1 km/longest baseline)

Maximum Recoverable Scale (MRS)

- depends on the shortest baseline ($\sim 10 \text{ x beam size}$)
- 1.4" x (300 GHz/Freq) x (150m/shortest baseline)
- When the emission is more extended than MRS, the emission is resolve out → multiple configuration or ACA and TP are added.

Field of View (FOV)

- FWHM of the 12m telescope primary beam
- ~19 arcsec (33 arcsec) @ 300 GHz for 12m (7m)
- Area of target is larger than 1/3 FOV, mosaic observation.

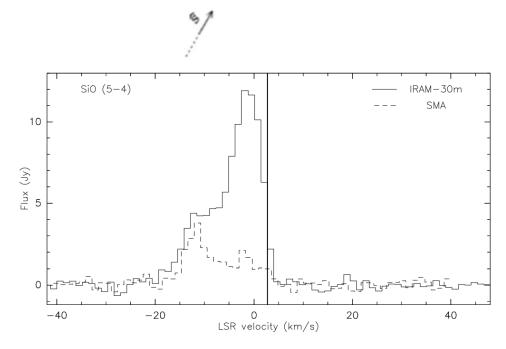


Fig. 7. SiO (5–4) spectra at the B1 position observed by IRAM 30m telescope (thin solid line) and the SMA (dashed line). Cloud velocity is indicated by a thick vertical line (V_{LSR} =2.7 km s⁻¹). The SMA observations were convolved to the 11 arcsec resolution so as to match the beam of the IRAM 30m telescope. Spectral resolution is 1.3 km s⁻¹ in both cases.

Scales
$$\theta \sim \frac{\lambda}{D(B)}$$

Angular Resolution (beam size)

- depend on the longest baseline
- 0.2" x (300 GHz/Freq) x (1 km/longest baseline)

Maximum Recoverable Scale (MRS)

- depends on the shortest baseline (~10 x beam size)
- 1.4" x (300 GHz/Freq) x (150m/shortest baseline)
- When the emission is more extended than MRS, the emission is resolve out → multiple configuration or ACA and TP are added.

Field of View (FOV)

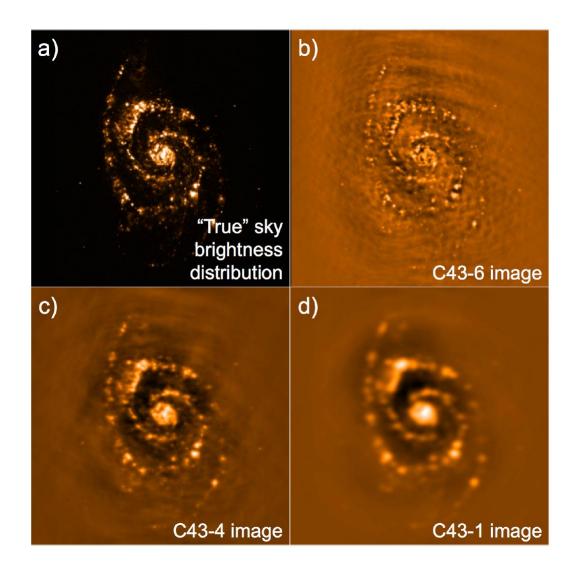
- FWHM of the 12m telescope primary beam
- ~19 arcsec (33 arcsec) @ 300 GHz for 12m (7m)
- Area of target is larger than 1/3 FOV, mosaic observation.

ALMA provide multi-configurations

		Band	1	3	4	5	6	7	8	9	10
Config.	$\mathbf{L}_{\mathrm{max}}$	Freq. (GHz)	40	100	150	185	230	345	460	650	870
	\mathbf{L}_{\min}										
7-m	45 m	θ_{res} (arcsec)	31.5	12.5	8.35	6.77	5.45	3.63	2.72	1.93	1.44
	9 m	θ_{MRS} (arcsec)	167	66.7	44.5	36.1	29.0	19.3	14.5	10.3	7.67
C-1	161 m	θ_{res} (arcsec)	8.45	3.38	2.25	1.83	1.47	0.98	0.74	0.52	0.39
	15 m	θ_{MRS} (arcsec)	71.2	28.5	19.0	15.4	12.4	8.25	6.19	4.38	3.27
C-2	314 m	θ_{res} (arcsec)	5.75	2.30	1.53	1.24	1.00	0.67	0.50	0.35	0.26
	15 m	θ_{MRS} (arcsec)	56.5	22.6	15.0	12.2	9.81	6.54	4.90	3.47	2.59
C-3	$500 \mathrm{\ m}$	θ_{res} (arcsec)	3.55	1.42	0.94	0.77	0.62	0.41	0.31	0.22	0.16
	15 m	θ_{MRS} (arcsec)	40.5	16.2	10.8	8.73	7.02	4.68	3.51	2.48	1.86
C-4	784 m	θ_{res} (arcsec)	2.30	0.92	0.61	0.50	0.40	0.27	0.20	0.14	0.11
	15 m	θ_{MRS} (arcsec)	28.0	11.2	7.50	6.08	4.89	3.26	2.44	1.73	1.29
C-5	1.4 km	θ_{res} (arcsec)	1.38	0.55	0.36	0.30	0.24	0.16	0.12	0.084	0.063
	15 m	θ_{MRS} (arcsec)	16.8	6.70	4.47	3.62	2.91	1.94	1.46	1.03	0.77
C-6	$2.5~\mathrm{km}$	θ_{res} (arcsec)	0.78	0.31	0.20	0.17	0.13	0.089	0.067	0.047	0.035
	15 m	θ_{MRS} (arcsec)	10.3	4.11	2.74	2.22	1.78	1.19	0.89	0.63	0.47
C-7	$3.6~\mathrm{km}$	θ_{res} (arcsec)	0.53	0.21	0.14	0.11	0.092	0.061	0.046	0.033	0.024
	64 m	θ_{MRS} (arcsec)	6.45	2.58	1.72	1.40	1.12	0.75	0.56	0.40	0.30
C-8	$8.5~\mathrm{km}$	θ_{res} (arcsec)	0.24	0.096	0.064	0.052	0.042	0.028	0.021	0.015	0.011
	110 m	θ_{MRS} (arcsec)	3.55	1.42	0.95	0.77	0.62	0.41	0.31	0.22	0.16
C-9	13.9 km	θ_{res} (arcsec)	0.14	0.057	0.038	0.031	0.025	0.017	0.012	0.0088	0.0066
	368 m	θ_{MRS} (arcsec)	2.03	0.81	0.54	0.44	0.35	0.24	0.18	0.13	0.093
C-10	$16.2~\mathrm{km}$	θ_{res} (arcsec)	0.11	0.042	0.028	0.023	0.018	0.012	0.0091	0.0065	0.0048
	244 m	θ_{MRS} (arcsec)	1.25	0.50	0.33	0.27	0.22	0.14	0.11	0.077	0.057

Scales
$$\theta \sim \frac{\lambda}{D(B)}$$

Angular Resolution (beam size)


- depend on the longest baseline
- 0.2" x (300 GHz/Freq) x (1 km/longest baseline)

Maximum Recoverable Scale (MRS)

- 1.4" x (300 GHz/Freq) x (150m/shortest baseline)
- When the emission is more extended than MRS, the emission is resolve out → multiple configuration or ACA and TP are added.

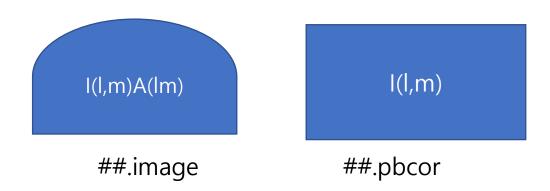
Field of View (FOV)

- FWHM of the 12m telescope primary beam
- ~19 arcsec (33 arcsec) @ 300 GHz for 12m (7m)
- Area of target is larger than 1/3 FOV, mosaic observation.

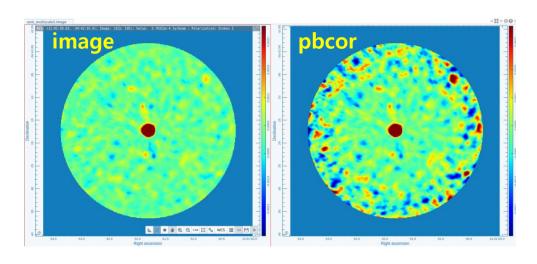
Scales
$$\theta \sim \frac{\lambda}{D(B)}$$

Antenna Primary Beam Response

Angular Resolution (beam size)


- depend on the longest baseline
- 0.2" x (300 GHz/Freq) x (1 km/longest baseline)

Maximum Recoverable Scale (MRS)

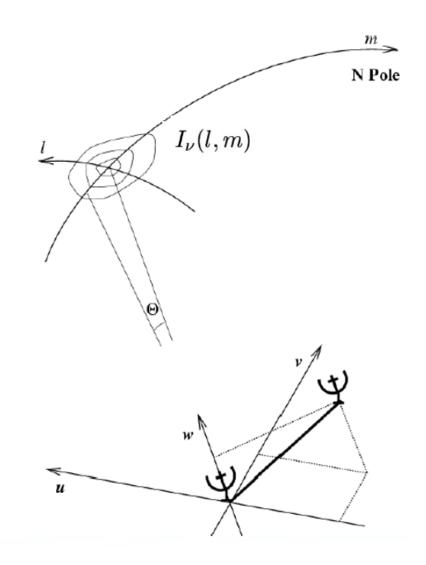

- 1.4" x (300 GHz/Freq) x (150m/shortest baseline)
- When the emission is more extended than MRS, the emission is resolve out → multiple configuration or ACA and TP are added.

Field of View (FOV)

- FWHM of the 12m telescope primary beam
- ~19 arcsec (33 arcsec) @ 300 GHz for 12m (7m)
- Area of target is larger than 1/3 FOV, mosaic observation.

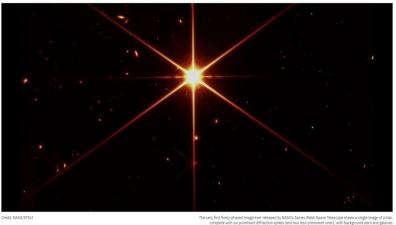
The signal received incorporates the A(l,m). You should use the **pbcor** for science!!

Visibility (V) and Sky Brightness (I)

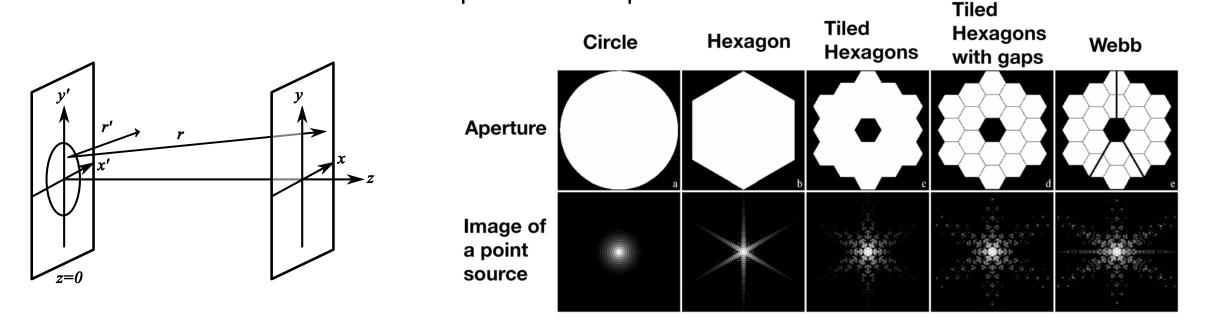

$$V_{\nu}(u,v) = \iint I_{\nu}(l,m)e^{-2\pi i(ul+vm)} dl dm$$

$$I_
u(l,m) = \iint V_
u(u,v) e^{2\pi i(ul+vm)} du dv$$

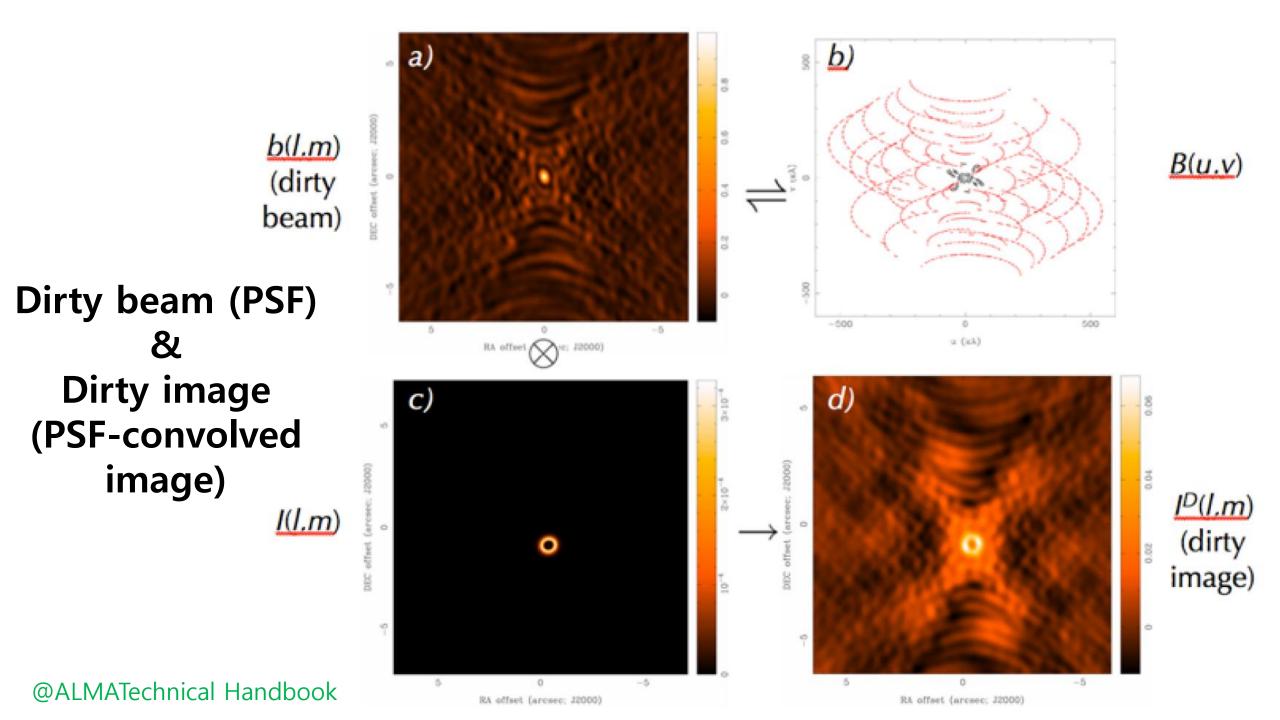
V(u,v), the complex visibility function, is the 2D Fourier transform of I(l,m), the sky brightness distribution (van Cittert-Zernke theorem)


(u,v): UV plane, distributions of Antenna pairs

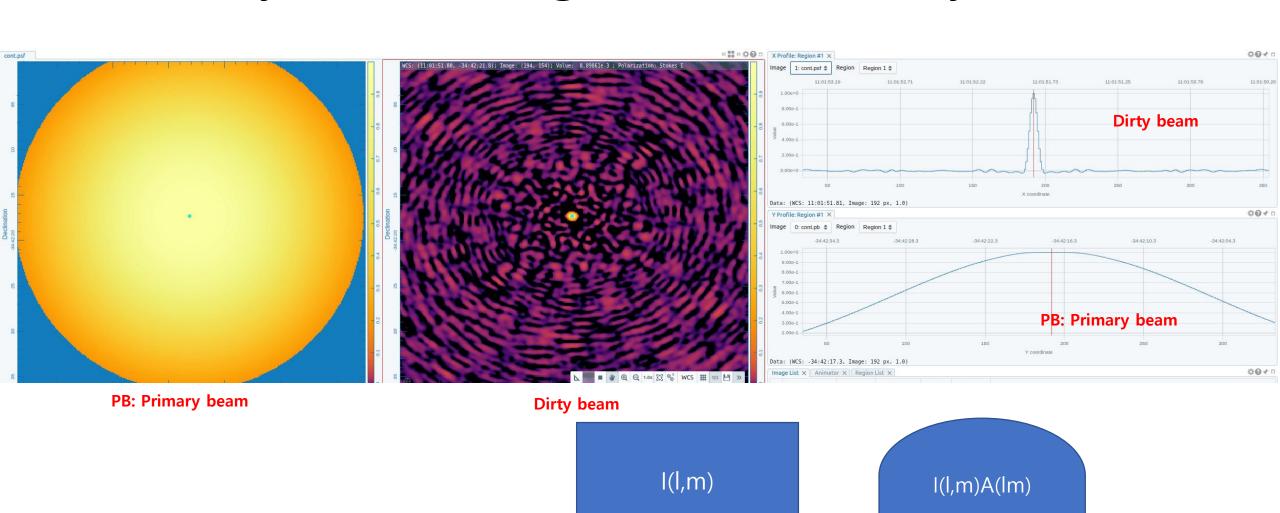
(l,m): R.A. and Dec. in sky


Fraunhofer diffraction pattern

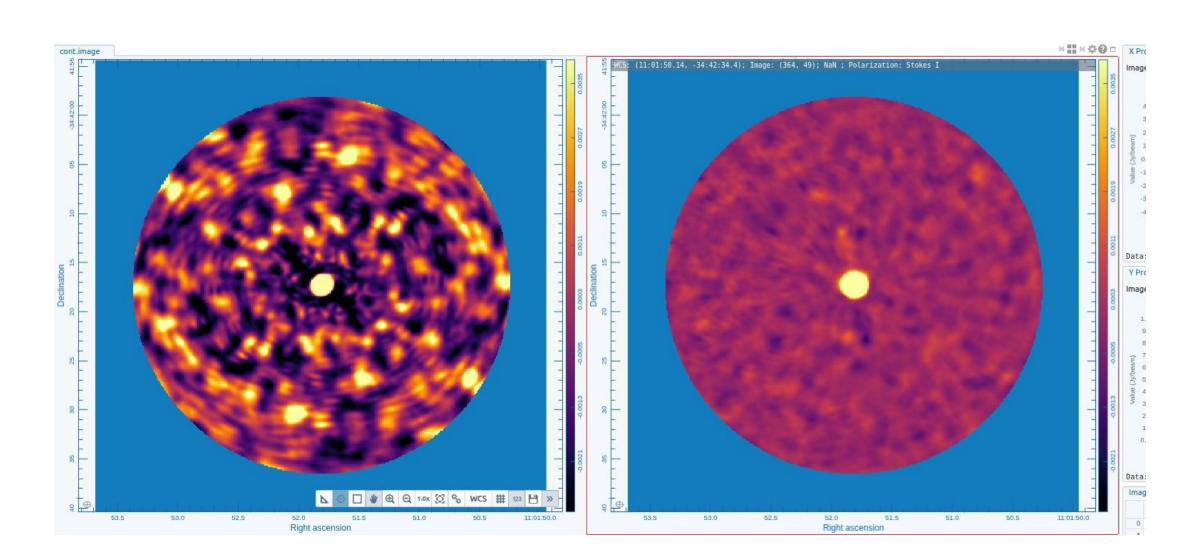
$$U(x,y,z) \propto \iint_{ ext{Aperture}} A(x',y') e^{-irac{2\pi}{\lambda}(lx'+my')} \, dx' \, dy'$$



The very first finely-phased image ever released by NASA's James Webb Space Telescope shows a single image of a structure of the structure of


PSF is Fourier Transform of Aperture shape.

Credit: R. B. Makidon, S. Casertano, C. Cox & R. van der Marel, STScI/NASA/AURA


Primary beam (single dish) vs. Dirty Beam

##.pbcor

= ##.image / ##.pb

Dirty image vs. cleaned image

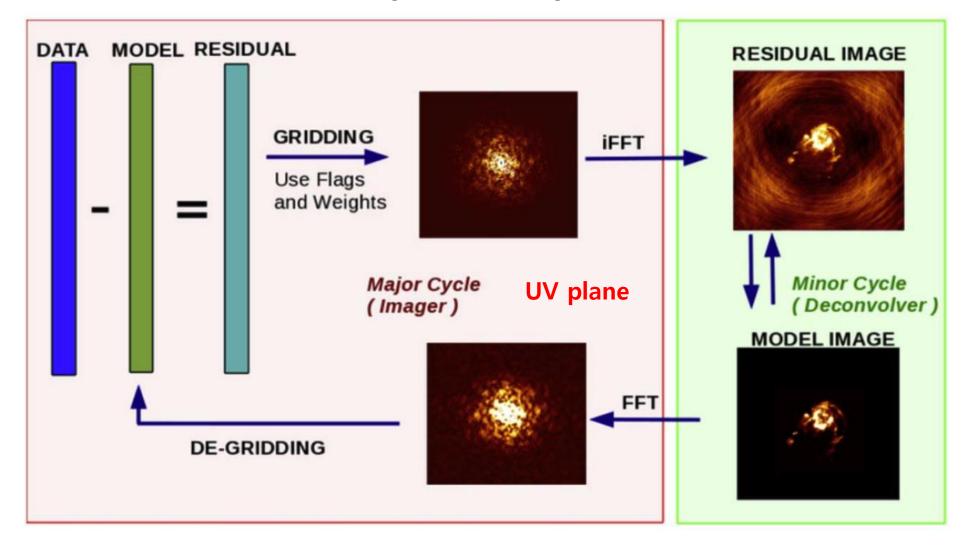
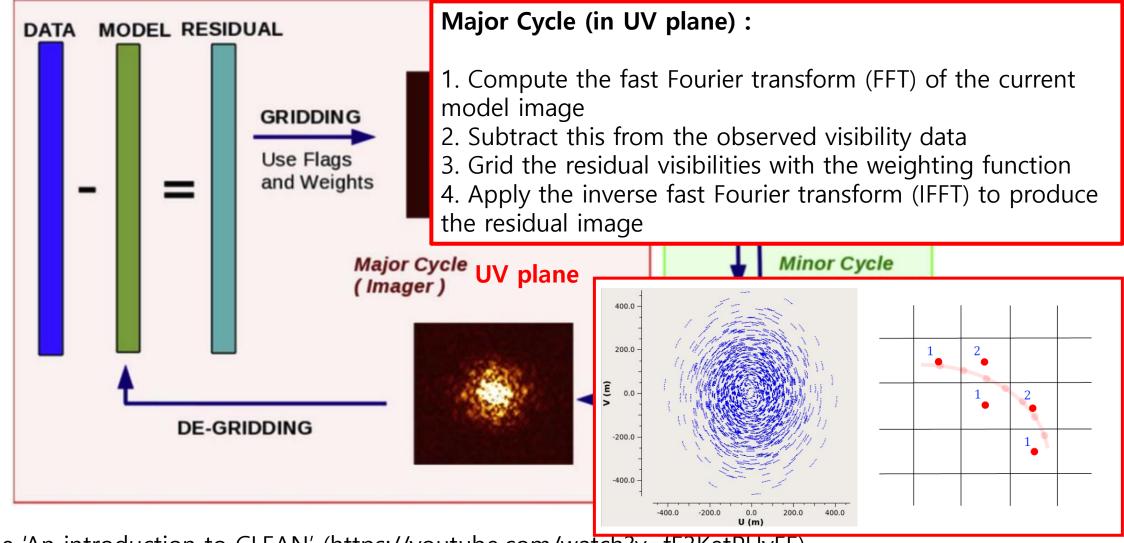



Image plane

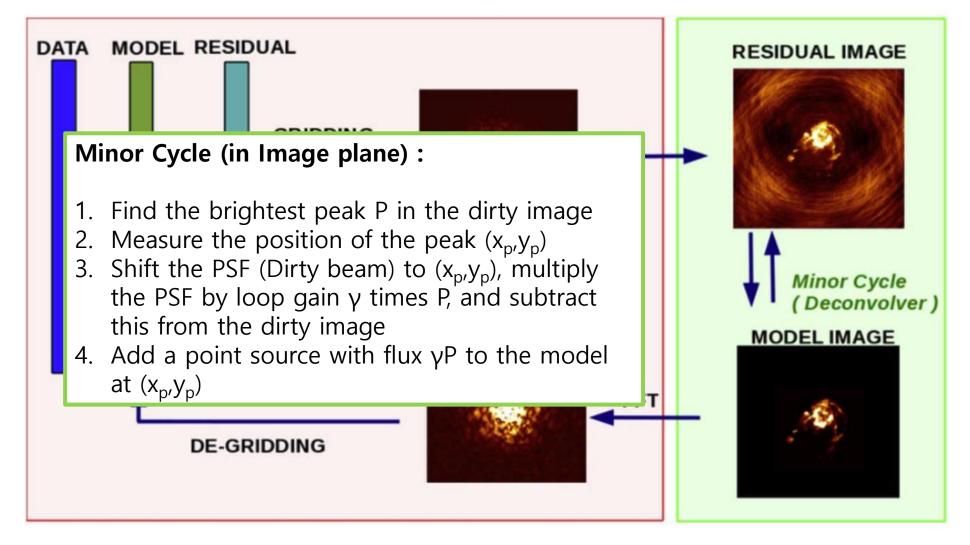
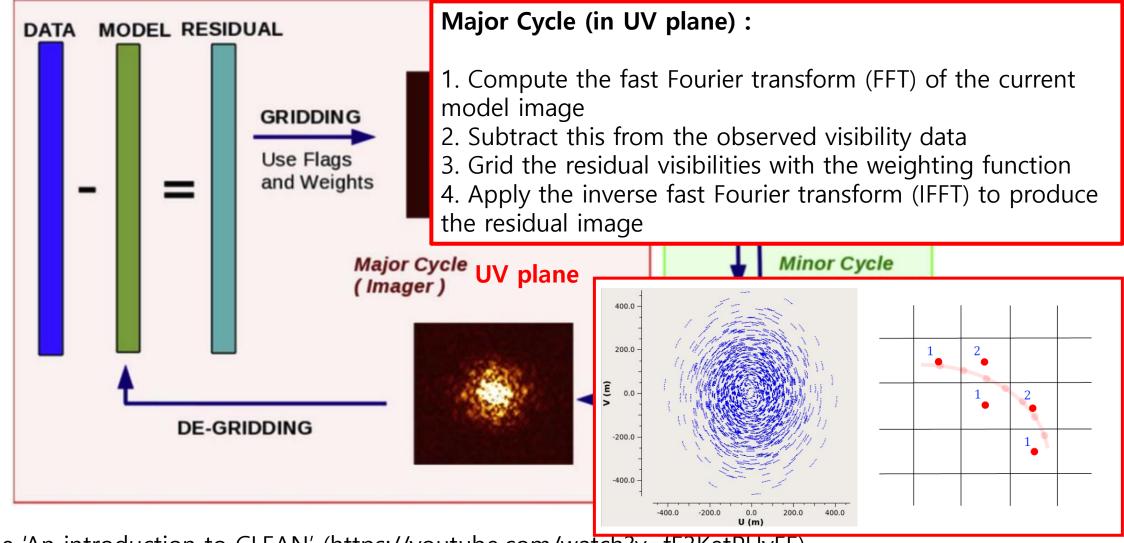
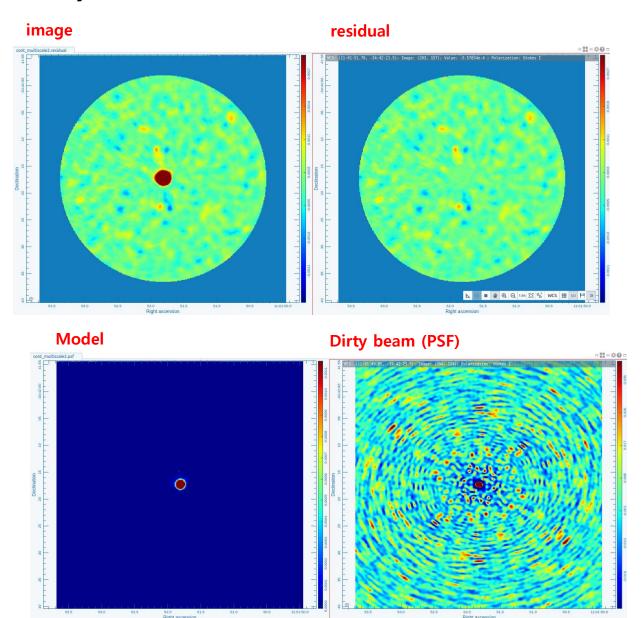



Image plane

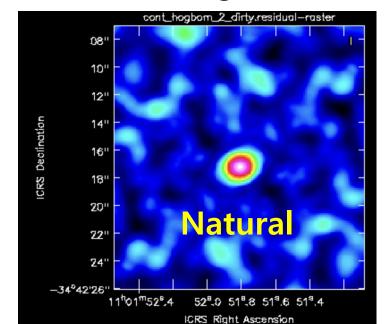


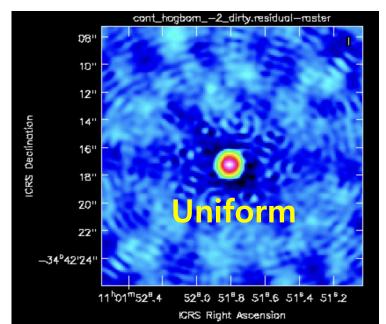
Cleaned Image = Andel convolved

Model convolved with main lobe of PSF

+

Residual image

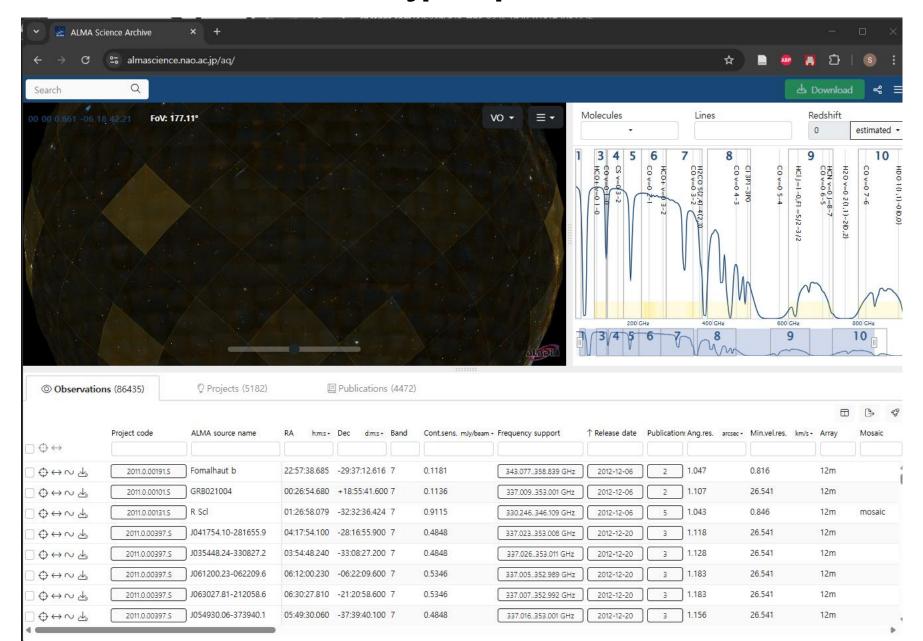


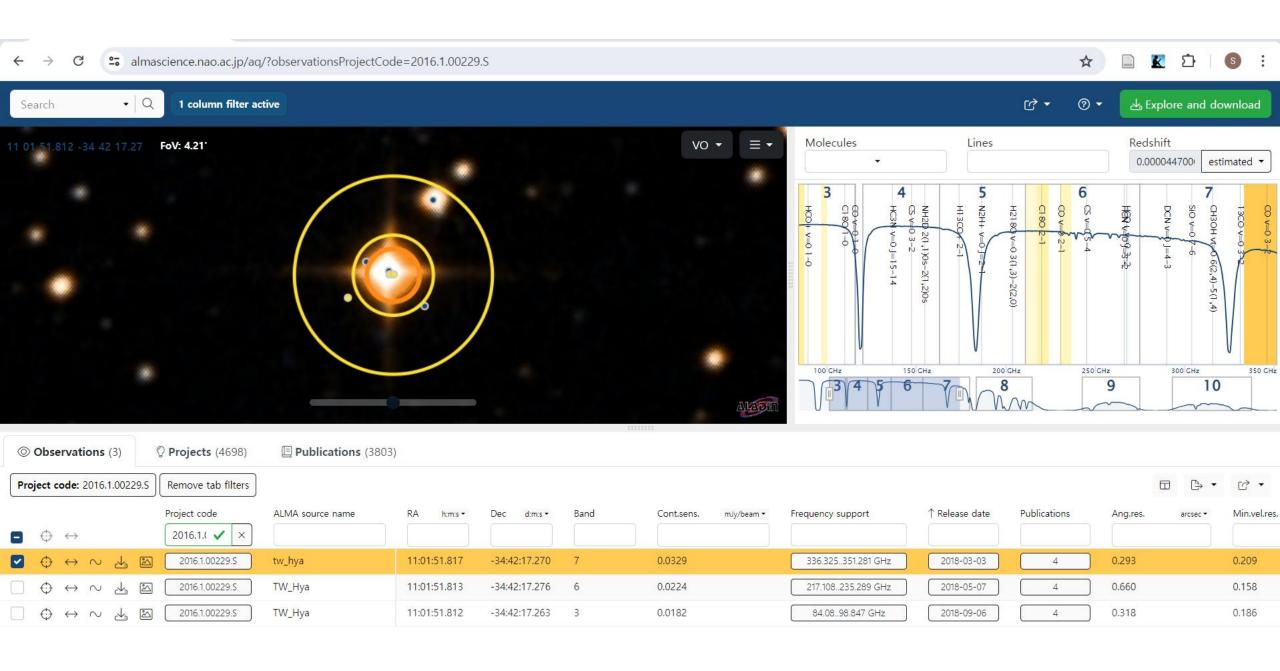

Image Parameter Selection

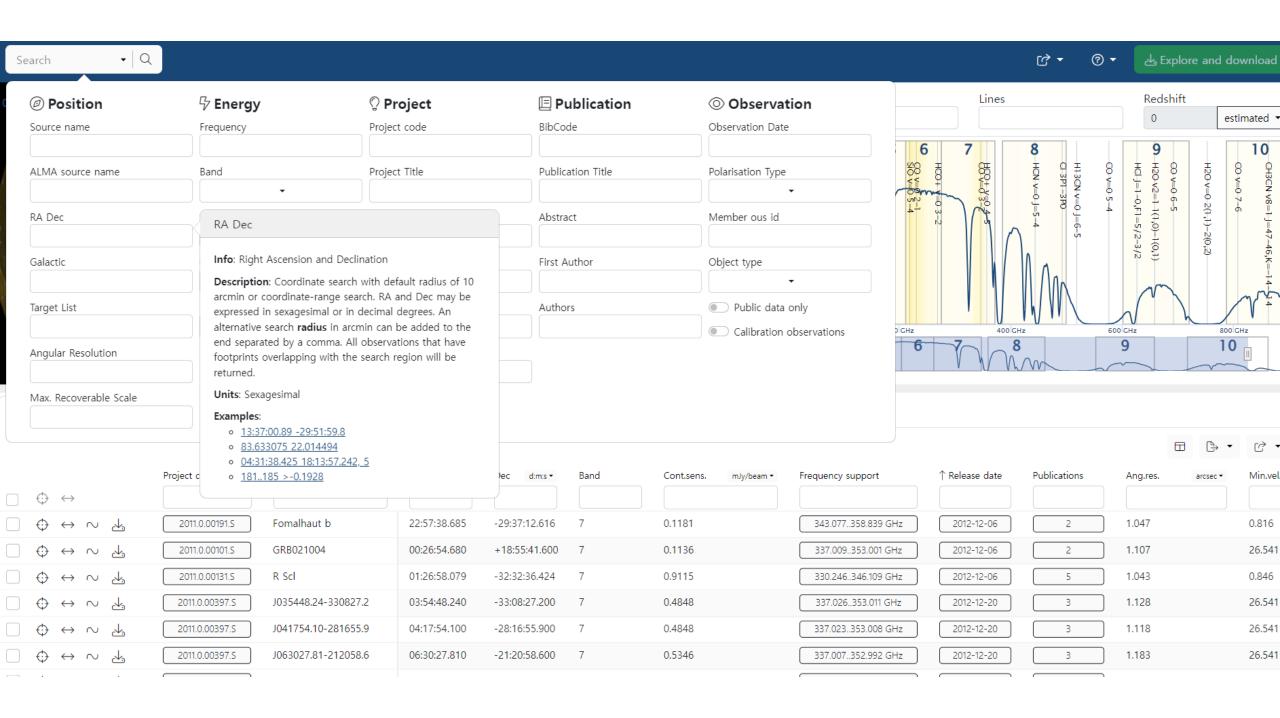
- pixel size : 5-8 times of minor axis of beam
- Image size : cover the Primary Beam
- specmode :
 - Continuum : 'mfs' (multi-frequency synthesis)
 - Line : 'cube'
- Deconvolver: 'Hogbom', 'Clark'(fast,simple), 'multi-scale'; 'mtmfs'
- Niter/threshold: how many to clean before stopping

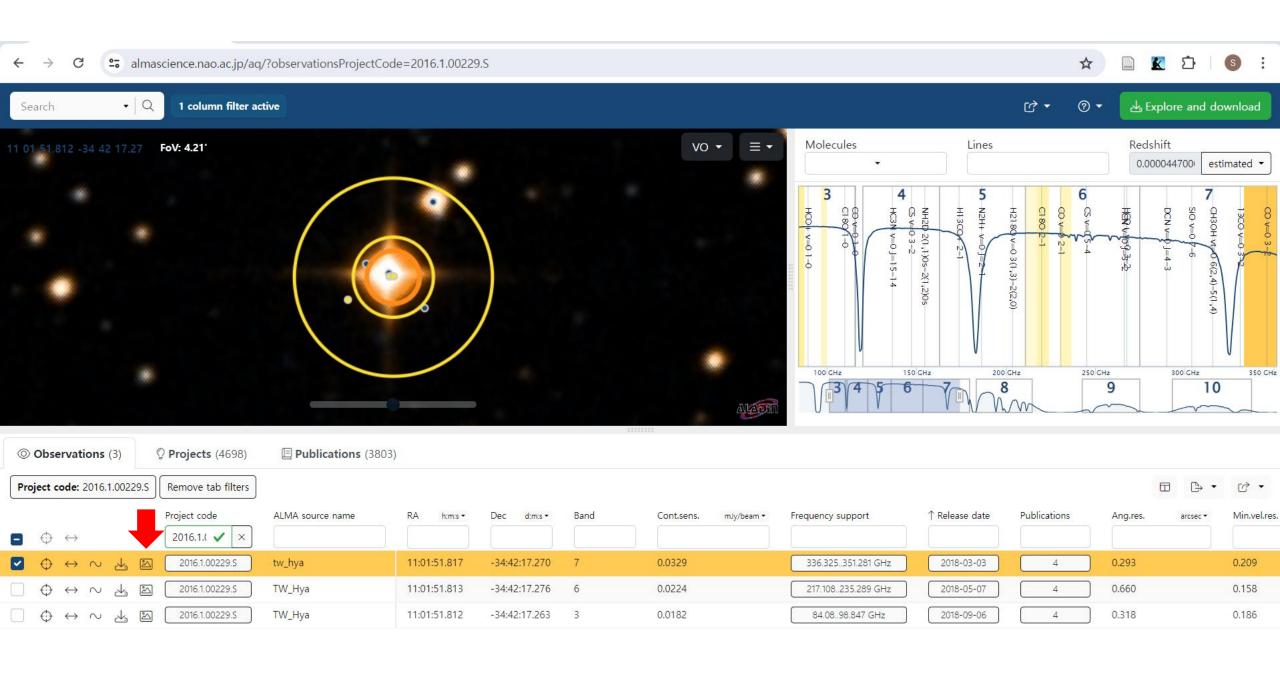
Image Parameter Selection

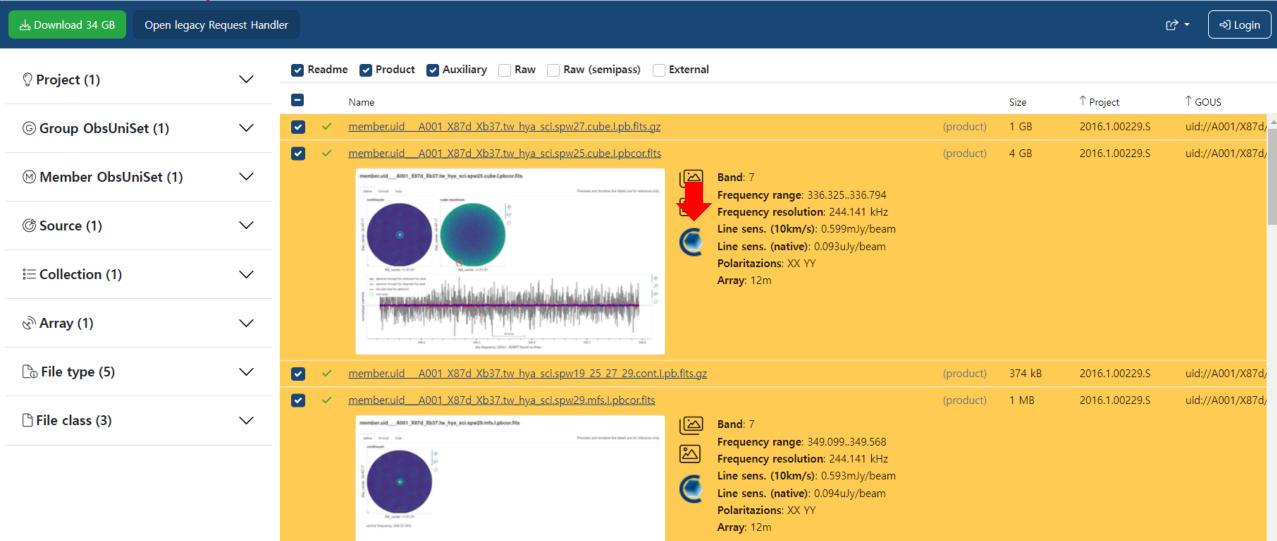
- Weightings
 - Default is Briggs weighting with robust =0.5
 - +2 : Natural & -2 : Uniform
 - Uniform : Higher resolution
 - Natural : Higher SNR or Accurate flux


Image Parameter Selection


- Taper
 - Make larger beam size : gaussian smoothing
- UV range
 - If you compare the flux between observations, you need to
 - If a few short baseline make stripes or a few long baseline make tile-like features, you can exclude them.


Download Data


- 1. Download data (raw + auxiliary data) from ALMA Science Portal & Restore it using casa pipeline
 - 2. Request the calibrated data via helpdesk (even case 2, download the auxiliary data for weblog)


https://almascience.nao.ac.jp/aq/

275 MB

113 GB

Fach Member OUS (or SB) may have the following files available for download:

readme A text file with very basic information

product Final images and image cubes

auxiliary A file containing logs, quality assurance information, scripts, and calibration data

raw Raw visibility data

external Enhanced data products (including enhanced images or visibility data) created after the data delivery

2016.1.00229.S uid A001 X87d Xb37 auxiliary.tar

2016.1.00229.S uid A002 Xbb00cd X32c.asdm.sdm.tar

auxiliary

🗹 🖺 raw

In download_XXX.sh, check the server!!

```
LIST=("
https://almascience.nao.ac.jp/dataPortal/2016.1.00229.S_uid___A001_X87d_Xb3d_auxiliary.tar
https://almascience.nao.ac.jp/dataPortal/2016.1.00229.S_uid___A002_Xbfcd9b_X70c.asdm.sdm.tar
https://almascience.nao.ac.jp/dataPortal/member.uid___A001_X87d_Xb3d.README.txt
")
```

```
[shlee@pluto TW Hya]$ ls
2016.1.00229.S
2016.1.00229.S uid A001 X87d Xb3d auxiliary.tar
2016.1.00229.S uid A002 Xbfcd9b X70c.asdm.sdm.tar
download-files twhya.sh
member.uid A001 X87d Xb3d.README.txt
[shlee@pluto TW Hya]$ cd 2016.1.00229.S/science goal.uid
                                                          A001 X87d Xb3b/group.
     A001 X87d Xb3c/member.uid A001 X87d Xb3d/
[shlee@pluto member.uid A001 X87d Xb3d]$ ls
calibrated calibration log product qa raw script
[shlee@pluto member.uid A001 X87d Xb3d]$ ls script/
casa-20240703-150200.log
                          ipython-20240703-150206.log
                                                        scriptForImaging.py
casa piperestorescript.py
                                                        scriptForPI.py
                          PPR uid A001 X87d Xb3e.xml
casa pipescript.py
                          scriptForImagingPrep.py
```

```
|-- project_id/
| |-- science_goal.ouss_id/
| | |-- group.ouss_id/
| | | |-- member.ouss_id/
```

- **Project** All observations associated with a specific proposal.
- **Science Goal OUS** All observations associated with a specific science goal in that proposal.
- **Group OUS** Associated observations within a Science Goal (e.g., observations of the same fields with the same spectral tunings but with **different arrays** or **array configurations**.
- **Member OUS** A specific set of observations of the same fields using the same tunings and array or array configuration.
- **Execution block** An individual "unit" of the observations needed for a Member OUS.

```
Atacama Large Millimeter/submillimeter Array (ALMA)
#####
Cycle: 4
Project code: 2016.1.00229.S
SB name: TW Hya a 06 TM1
PI name: Edwin Bergin
Project title: Unveiling the Gas Phase Kinetic Chemistry in Protoplanetary Disks
Configuration: Longest Baseline = 460.0 m
Proposed rms: 5.0 mJy / 0.122070 MHz (0.166 km/s)
Proposed beam size: 1 A arcsec
CASA version used for reduction: 4.7.2
QA2 Result: PASS
lotal number of member SBS in this UUS Group: I
Comments from Reducer:
This scheduling block was calibrated and imaged using the pipeline
version 38366 (C4-R2B) in CASA 4.7.2 (r39732).
The calibration appears reasonable, no additional flagging was required in stage 2 (hifa flagdata).
The imaging
The continuing In script directory,
                                              led by the pipeline. The PI may choose to do a more carefu
l identific > casa(4.7.2) -pipeline
                                              tral line cubes.
self-calibr ➤ Execfile('scriptForPl.py')
                                              tinuum.
All pipelin
                                              an and a broad mask, the PI may want to do a deeper clean
with careful masking to improve the images.
```

member.uid A001 X87d Xb3d.README.txt

Request it via Helpdesk

- Only interferometric data (not single-dish data)
- Up to 5 SBs at one time.
- You can download it after 2 weeks.

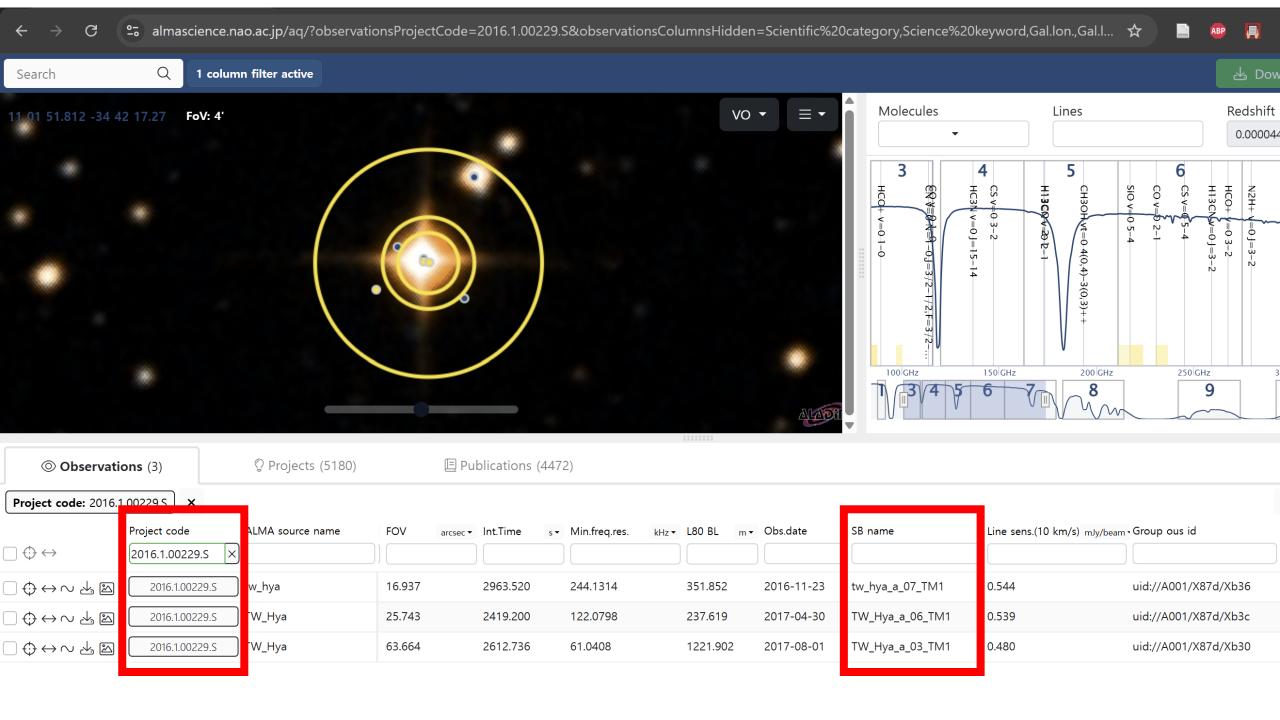
[How to request]

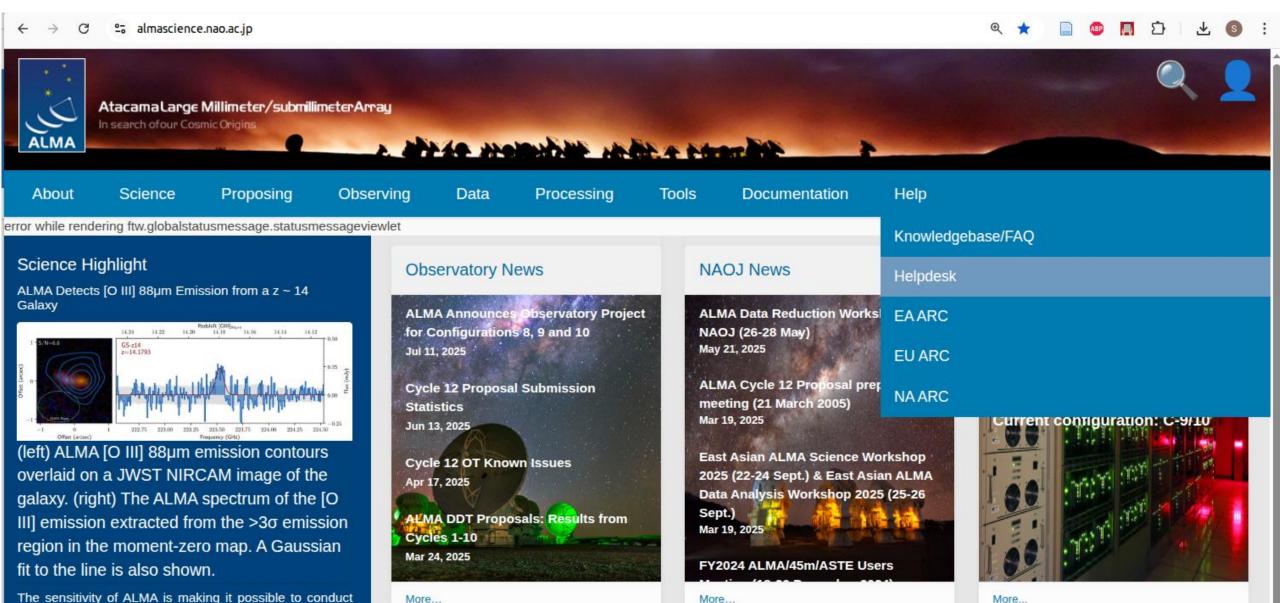
- 1. Log in to Helpdesk https://help.almascience.org/
- 2. Create a new ticket by clicking "Submit Helpdesk Ticket"
- 3. Choose "Archive and Data Retrieval (EA)" as Department
- 4. Put "Request of calibrated MS" as Subject
- 5. Choose "Data request (calibrated MS, stale data, calibrator data, or suggestions)" as Sub-category
- 6. Provide the following information in the box of "Message", then "Submit" the ticket

Message

a. Your affiliation

[example: University of Tokyo] (so that we can check if the institute does not have a network issue with NAOJ etc.)

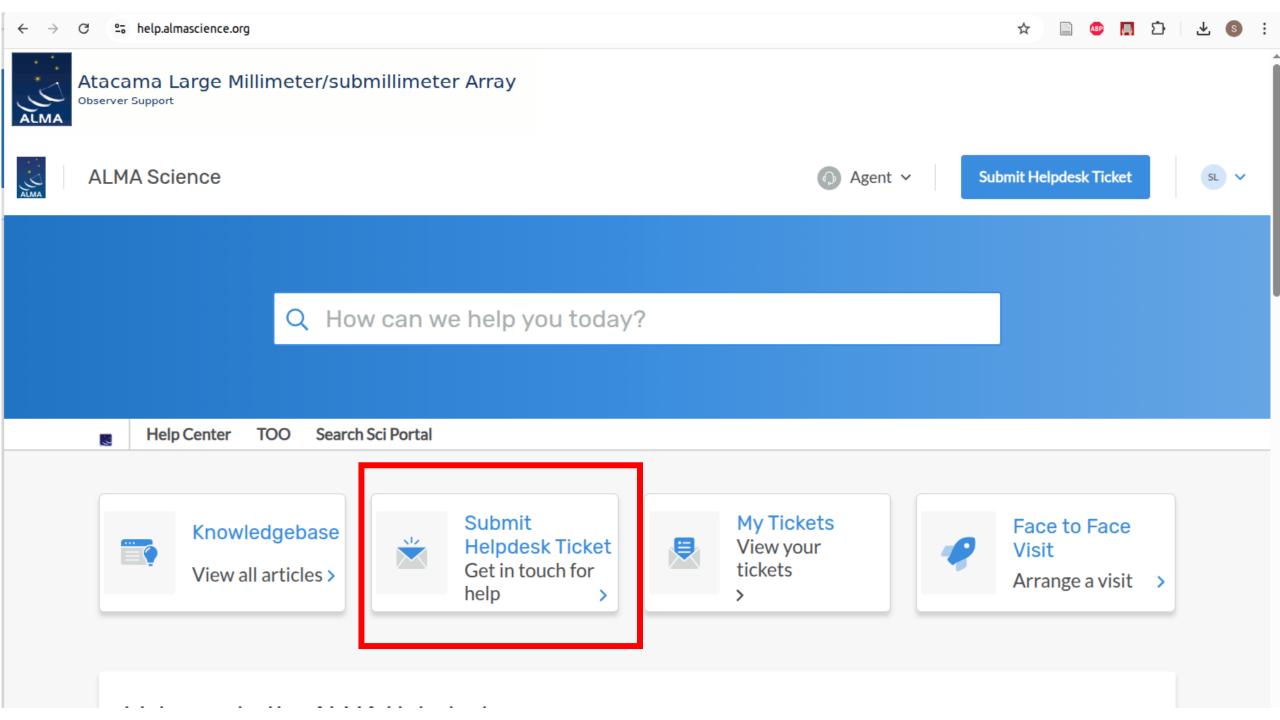

b. Project Code and SB name of the data

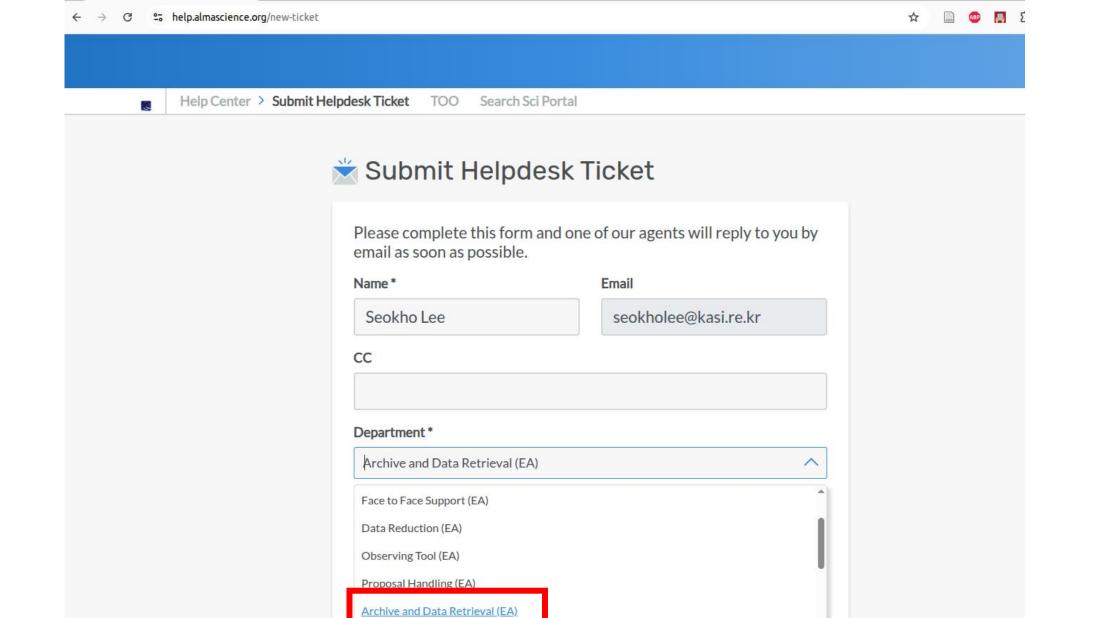

[example: please Split Project Code and SB name with a space.

2013.1.00010.S NGC253_a_04_TM1

2013.1.00010.S NGC253_a_07_TM1

2014.1.00020.S NGC1068_a_06_TM1

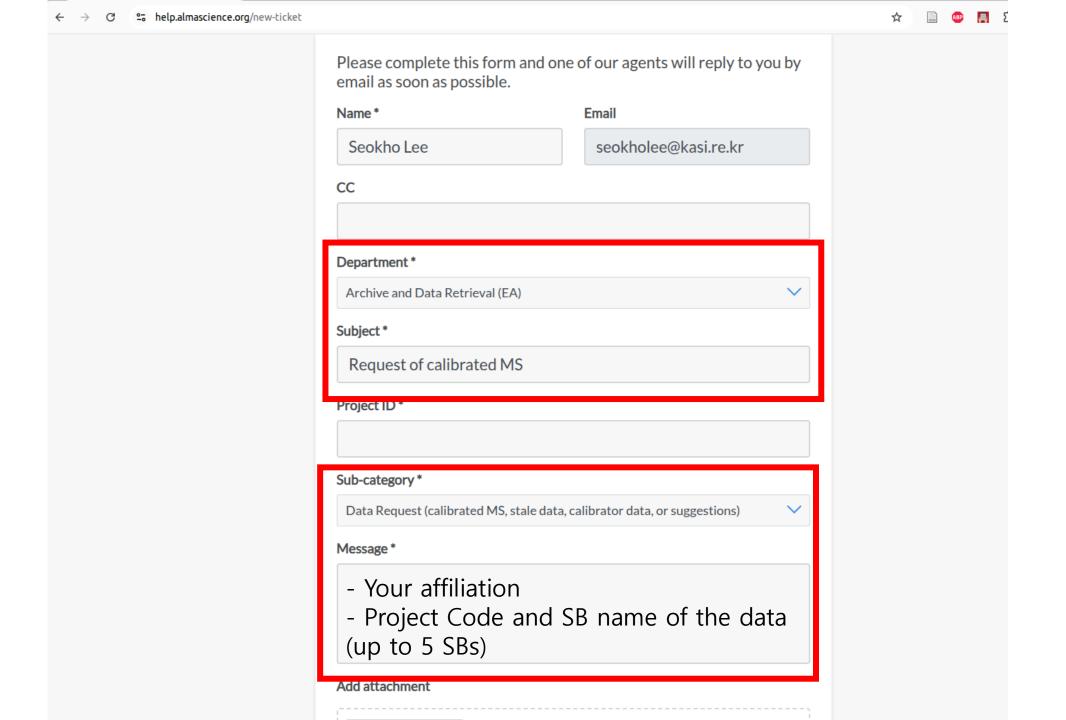

The ALMA Science Portal is a one-stop source for information and tools aimed at the scientific community as a whole, including proposers, archive researchers and ALMA staff.


Ouick Links

follow-up observations of high-redshift JWST galaxy candidates to (a) confirm their redshifts and (b) derive galaxy properties. In a recently published study led by

Sander Schouws, the authors make use of ALMA to

search for [O III] 88µm line emission from JADES-GS-



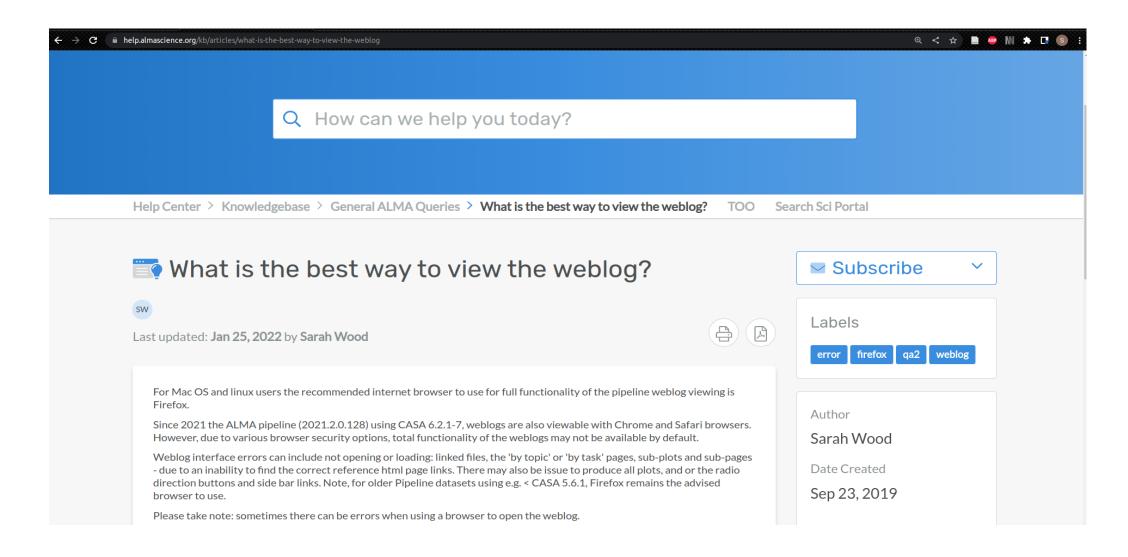
Proposal Change Requests (EA)

Proiect Triggers

Maccago *

Proposal Change Request Review (EA)

Weblog


We can find important information and parameters

```
A001 X87d
[shlee@pluto member.uid
                                               -- project_id/
[shlee@pluto qa]$ ls
                                                                               XXXXX.weblog.tgz
                                                |-- science_goal.ouss_id/
uid A001 X87d Xb3d.weblog.tgz
                                                                         pipeline-XXXXX/html (directory)
[shlee@pluto qa]$ tar -xzf uid
                                         A06
                                                  |-- group.ouss_id/
[shlee@pluto qa]$ cd pipeline-201705
                                                    |-- member.ouss id/
[shlee@pluto html]$ ls
casa-20170503-212520.log
                                  stage10
                                                       -- README
                                                                   (1)
casa-20170504-123945.log
                                  stage11
                                                       -- product/
                                                                   (2)
casa commands.log
                                  stage12
                                                       -- calibration/
                                                                   (3)
casa piperestorescript.py
                                  stage13
                                                                   (4)
                                                      |-- qa/
casa pipescript.py
                                  stage14
index.html
                                                                   (5)
                                                       -- script/
                                  stage15
resources
                                  stage16
                                                       -- log/
                                                                   (6)
                                                                        (only present in manually calibrated data)
sessionsession 1
                                  stage17
                                                                   (7)
                                                                        (only present when part b is unpacked)
                                                       -- raw/
stage1
                                  stage18
```

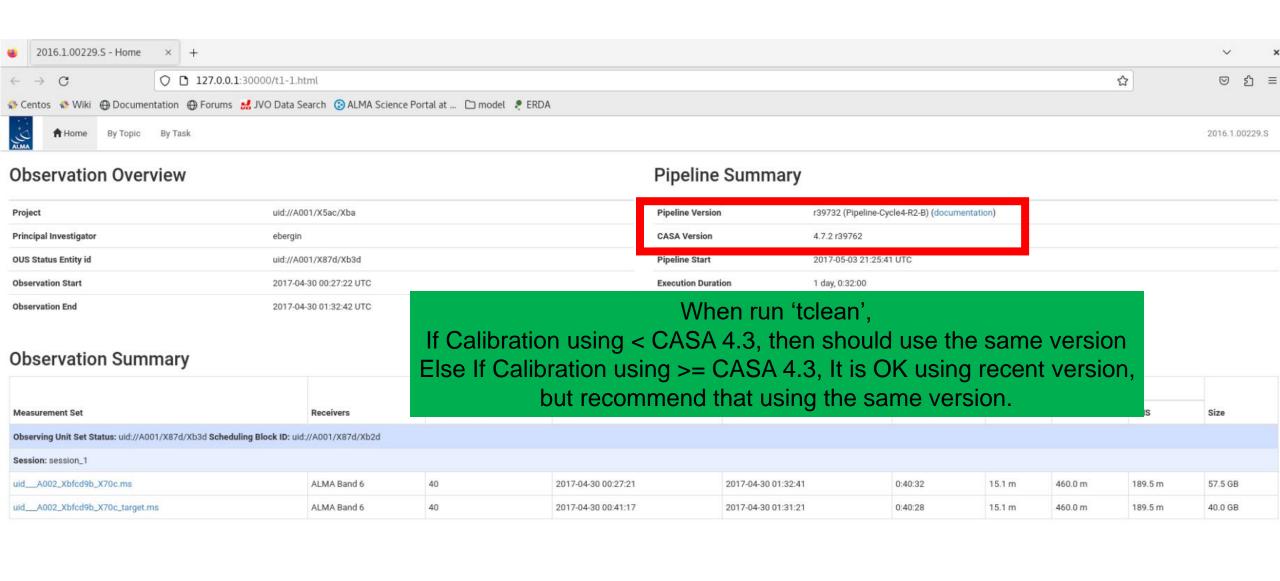
```
[shlee@pluto html]$ casa --pipeline
```

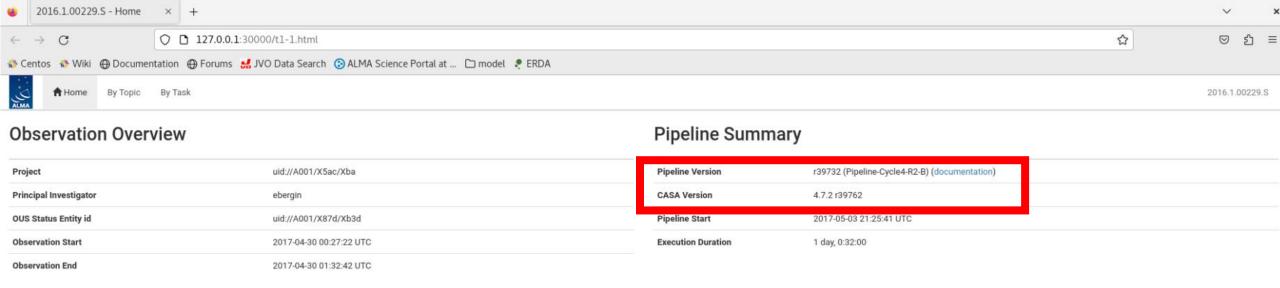
Open Weblog

https://help.almascience.org/kb/articles/what-is-the-best-way-to-view-the-weblog

Open weblog

ii) Use a python3 call, external to a CASA session:


Outside of CASA one can also create the http server in which to view a local weblog. From the command line simply type:


```
python3 -m http.server 8080 --bind 127.0.0.1
```

The weblog can then be accessed in a web browser via the URL:

http://127.0.0.1:8080/"location_of_PL_weblog"/html/index.html

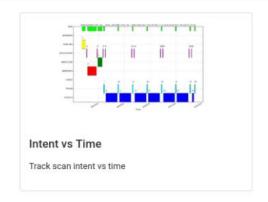
Note, this method requires python3, for which the version delivered with CASA can be used by setting it as an alias or by calling the full path. On MacOS this is found in "/Applications/CASA.app/Contents/MacOS/python3", or on Linux systems "install path/casa-6.2.1-7-pipeline-2021.2.0.128/bin/python3"

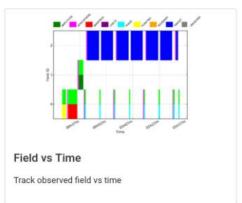
Observation Summary

			Time (UTC) Baseline Length				1			
Measurement Set	Receivers	Num Antennas	Start	End	On Source	Min	Max	RMS	Size	
Observing Unit Set St A001/X87d/Xb3d Scheduling Block ID: uid://A001/X87d/Xb2d										
Session: session_1										
uldA002_Xbfcd9b_X70c.ms	ALMA Band 6	40	2017-04-30 00:27:21	2017-04-30 01:32:41	0:40:32	15.1 m	460.0 m	189.5 m	57.5 GB	
uidA002_Xbfcd9b_X70c_target.ms	ALMA Band 6	40	2017-04-30 00:41:17	2017-04-30 01:31:21	0:40:28	15.1 m	460.0 m	189.5 m	40.0 GB	

By Topic By Task

Session: session_1


uid__A002_Xbfcd9b_X70c_target.ms


Overview of 'uid___A002_Xbfcd9b_X70c.ms'

Observation Execution Time

Start Time	2017-04-30 00:27:21
End Time	2017-04-30 01:32:41
Total Time on Source	0:56:56
Total Time on Science Target	0:40:32

LISTOBS OUTPUT

Spatial Setup

Science Targets	'TW_Hya'	
Calibrators	'J1037-2934' and 'J1107-4449'	

Antenna Setup

Min Baseline	15.1 m
Max Baseline	460.0 m
Number of Baselines	780
Number of Antennas	40

Spectral Setup

All Bands	'ALMA Band 6' and 'WVR'
Science Bands	'ALMA Band 6'

Sky Setup

Min Elevation	67.28 degrees
Max Elevation	83.36 degrees

```
*********************************
  ##### Begin Task: listobs
  listobs (vis='calibrated_final.ms', selectdata=True, spw='', field='', antenna='', uvrange='', timerange='', correlation='', scan='', intent='', feed='', arr
  ______
            MeasurementSet Name: /scratch/alma/shlee/alma_summer/TW_Hya/2016.1.00229.S/science_goal.uid__A001_X87d_Xb3b/group.uid__A001_X87d_Xb3c/member.
  Observer: ebergin
                          Project: uid://A001/X5ac/Xba
+ Observation: ALMA
  Computing scan and subscan properties...
  Data records: 1640000
                            Total elapsed time = 3065.14 seconds
     Observed from
                    30-Apr-2017/00:41:17.1
                                          to
                                                30-Apr-2017/01:32:22.3 (UTC)
     ObservationID = 0
                             ArrayID = 0
                                       Scan FldId FieldName
    Date
               Timerange (UTC)
                                                                        nRows
                                                                                 SpwIds
                                                                                         Average Interval(s)
                                                                                                                ScanIntent
    30-Apr-2017/00:41:17.1 - 00:47:51.8
                                          9
                                                 2 TW_Hya
                                                                          266500
                                                                                 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
               00:49:09.4 - 00:55:44.0
                                         11
                                                 2 TW_Hya
                                                                         266500
                                                                                 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
                                                                                 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
               00:58:02.6 - 01:04:37.3
                                                 2 TW_Hya
                                                                          266500
               01:05:53.4 - 01:12:28.1
                                         17
                                                 2 TW_Hya
                                                                         266500
                                                                                 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
               01:14:41.0 - 01:21:15.6
                                                 2 TW_Hya
                                                                          266500
                                                                                 [0,1,2,3,4]
                                                                                             [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
                                                 2 TW_Hya
                                                                                 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
               01:22:31.5 - 01:29:06.2
                                                                         266500
                                                 2 TW_Hya
               01:31:21.8 - 01:32:22.3
                                                                                 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
             (nRows = Total number of rows per scan)
  Fields: 1
    ID
         Code Name
                                                 Decl
                                                               Epoch
                                                                       SrcId
                                                                                 nRows
         none TW Hya
                                11:01:51.812563 -34.42.17.27561 ICRS
                                                                       2
                                                                               1640000
  Spectral Windows: (5 unique spectral windows and 1 unique polarization setups)
    SpwID
          Name
                                                                                                                          Corrs
                                                    #Chans
                                                                    Ch0 (MHz)
                                                                             ChanWid(kHz)
                                                                                           TotBW(kHz) CtrFreq(MHz) BBC Num
           X2074619945#ALMA_RB_06#BB_2#SW-01#FULL_RES
                                                                               -15625.000
                                                                                           2000000.0 218083.2912
                                                      128
                                                            TOPO 219075.479
                                                                                                                          XX YY
                                                      128
                                                                  233286.533
                                                                                15625.000
                                                                                            2000000.0 234278.7202
                                                                                                                          XX YY
           X2074619945#ALMA_RB_06#BB_4#SW-01#FULL_RES
                                                            TOPO
           X2074619945#ALMA_RB_06#BB_1#SW-01#FULL_RES
                                                     1920
                                                            TOPO
                                                                 220437.264
                                                                                  -61.035
                                                                                             117187.5 220378.7008
                                                                                                                          XX YY
                                                                                                                          XX YY
                                                     1920
                                                                  219598.946
                                                                                  -61.035
                                                                                             117187.5 219540.3830
           X2074619945#ALMA_RB_06#BB_1#SW-02#FULL_RES
                                                            TOPO
                                                            TOPO 231082.493
                                                                                                                       3 XX YY
          X2074619945#ALMA_RB_06#BB_3#SW-01#FULL_RES
                                                     3840
                                                                                   61.035
                                                                                             234375.0 231199.6500
  Sources: 15
    ID
         Name
                            SpwId RestFreq(MHz)
                                                SysVel(km/s)
         J1037-2934
                                 218103.1
         J1037-2934
                                 234300
         J1037-2934
                                 220398.6842
         J1037-2934
                                 219560.358
         J1037-2934
                                 231220.686
                                                                                                               Listobs in casalogger
         J1107-4449
                                 220398.6842
         J1107-4449
                                 219560.358
         J1107-4449
                                 218103.1
    1
         J1107-4449
                                 231220.686
    1
         J1107-4449
                                 234300
                                                13.4
                                                                                                    Check the field ID and Spw ID
         TW_Hya
                                 220398.6842
         TW_Hya
                                 219560.358
                                                13.4
         TW_Hya
                                 218103.1
                                                13.4
         TW_Hya
                                 231220.686
                                                13.4
                                                13.4
         TW Hya
                                 234300
  Antennas: 40:
                                                                                                          ITRF Geocentric coordinates (m)
         Name Station
                        Diam
                                              Lat.
                                                                 Offset from array center (m)
                                 Long.
```

listobs ('calibrated.ms')

Antennas: 40:

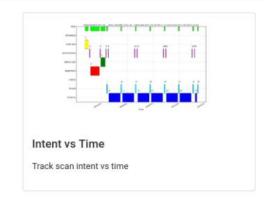
```
MeasurementSet Name: /scratch/alma/shlee/alma_summer/TW_Hya/2016.1.00229.5/science_goal.uid___A001_X87d_Xb3b/group.uid___A001_X87d_Xb3c/member.uid___A001_X87d_Xb3d/calibrated/calibrated.ms
                                                                                                                                                                                                    MS Version 2
Observer: ebergin Project: uid://A001/X5ac/Xba
Observation: ALMA
Data records: 2455900
                          Total elapsed time = 3791.95 seconds
  Observed from 30-Apr-2017/00:30:00.9 to 30-Apr-2017/01:33:12.8 (UTC)
  ObservationID = 0
                           ArrayID = 0
 Date
            Timerange (UTC)
                                     Scan FldId FieldName
                                                                     nRows
                                                                              SpwIds Average Interval(s) ScanIntent
 30-Apr-2017/00:30:00.9 - 00:30:17.0
                                                                        34440 [0,1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
                                              B J1037-2934
             00:30:37.3 - 00:35:39.7
                                                                       205000 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE BANDPASS#ON SOURCE_CALIBRATE WVR#ON SOURCE]
                                              0 J1037-2934
             00:36:04.2 - 00:36:20.3
                                              1 11107-4449
                                                                        34440 [0.1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
             00:36:36.3 - 00:39:07.5
                                              1 11107-4449
                                                                       102500 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE_FLUX#ON_SOURCE, CALIBRATE_WVR#ON_SOURCE]
             00:39:30.9 - 00:39:47.0
                                              B J1037-2934
                                                                        34440 [0,1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
                                              0 J1037-2934
             00:39:57.4 - 00:40:27.6
                                                                        20500 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE]
                                              2 TW Hya
             00:40:49.7 - 00:41:05.8
                                                                        34440 [0,1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
             00:41:17.1 - 00:47:51.8
                                              2 TW Hya
                                                                       266590 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
             00:48:13.7 - 00:48:43.9 10
                                                                        20500 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE]
                                              0 J1037-2934
             00:49:09.4 - 00:55:44.0 11
                                                                       266500 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE]
                                              2 TW Hya
             00:56:06.1 - 00:56:22.3
                                                                        34440 [0.1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
                                              0 J1037-2934
                                                                              [0.1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE]
             00:56:37.1 - 00:57:07.3
                                              0 J1037-2934
                                                                        34440 [0,1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
             00:57:32.3 - 00:57:48.4 14
                                              2 TW Hya
             00:58:02.6 - 01:04:37.3 15
                                              2 TW Hya
                                                                              [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
             01:04:59.6 - 01:05:29.8
                                              8 J1037-2934
                                                                              [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE]
             01:05:53.4 - 01:12:28.1
                                              2 TW Hya
                                                                              [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE]
             01:12:50.1 - 01:13:06.2
                                              0 J1037-2934
                                                                        34440 [0,1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE)
                                                                              [8.1,2,3,4] [6.85, 6.85, 6.85, 6.85, 6.85] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE]
             01:13:21.1 - 01:13:51.3 19
                                              0 31037-2934
                                                                        34440 [0,1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OF SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
             01:14:14.7 - 01:14:30.8 20
                                              2 TW Hya
             01:14:41.0 - 01:21:15.6
                                                                              [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE]
                                              2 TW Hya
             01:21:37.1 - 01:22:07.3 22
                                              0 J1037-2934
                                                                        20500 [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE]
             01:22:31.5 - 01:29:06.2 23
                                                                              [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
                                              2 TW Hya
             01:29:27.3 - 01:29:43.4 24
                                              0 J1037-2934
                                                                              [0.1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OF, SOURCE, CALIBRATE WVR#AMBIENT, CALIBRATE WVR#HOT, CALIBRATE WVR#OFF SOURCE]
             01:29:57.7 - 01:30:27.9 25
                                              B J1037-2934
                                                                               [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE PHASE#ON_SOURCE, CALIBRATE_WVR#ON_SOURCE]
                                                                              [0,1] [0.576, 0.576] [CALIBRATE ATMOSPHERE#AMBIENT, CALIBRATE ATMOSPHERE#HOT, CALIBRATE ATMOSPHERE#OFF SOURCE, CALIBRATE WYR#AMBIENT, CALIBRATE WYR#HOT, CALIBRATE WYR#OFF SOURCE]
             01:30:51.2 - 01:31:07.3
                                              2 TW Hya
                                     26
             01:31:21.8 - 01:32:22.3
                                              2 TW Hya
                                                                              [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
             01:32:42.6 - 01:33:12.8 28
                                              0 J1037-2934
                                                                              [0.1,2.3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE]
          (nRows = Total number of rows per scan)
Fields: 3
                                              Decl
                                                            Epoch SrcId
                              10:37:16.080000 -29.34.02.81300 ICRS
      none J1037-2934
                                                                              541200
                              11:07:08.694000 -44.49.07.61800 ICRS
      none J1107-4449
                                                                              136940
                              11:01:51.812563 -34.42.17.27561 ICRS
                                                                             1777760
      none TW Hya
Spectral Windows: (5 unique spectral windows and 1 unique polarization setups)
 SpwID Name
                                                 #Chans Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) BBC Num Corrs
        X2074619945#ALMA RB 06#BB 2#SW-01#FULL RES 128 TOPO 219075.479
                                                                             -15625.000
                                                                                        2000000.0 218083.2912
                                                                                                                    2 XX YY
        X2074619945#ALMA_RB_06#BB_4#SW-01#FULL_RES 12B TOPO 233286.533
                                                                             15625.000 2000000.0 234278.7202
                                                                                                                    4 XX YY
        X2074619945#ALMA RB 06#BB 1#SW-01#FULL RES 1920 TOPO 220437.264
                                                                                -61.035 117187.5 220378.7008
                                                                                                                    1 XX YY
        X2074619945#ALMA RB 06#BB 1#SW-02#FULL RES 1920 TOPO 219598.946
                                                                                -61.035
                                                                                         117187.5 219540.3830
                                                                                                                    1 XX YY
        X2074619945#ALMA RB 06#8B 3#SW-01#FULL RES 3840 TOPO 231082.493
                                                                                         234375.0 231199.6500
                                                                                                                     3 XX YY
Sources: 15
                         SpwId RestFreq(MHz) SysVel(km/s)
 ID
    Name
      J1037-2934
                              218103.1
      J1037-2934
                               234300
      J1037-2934
                               220398.6842
      J1037-2934
                               219560.358
      J1037-2934
                               231220.686
      J1107-4449
                               220398.6842
      J1107-4449
                               219560.358
      J1107-4449
                               218103.1
                               231220.686
      J1107-4449
      J1107-4449
                               234300
      TW Hya
                               220398.6842 13.4
                               219560.358
                                             13.4
      TW Hya
                               218103.1
                                             13.4
                               231220.686
                                             13.4
                               234300
                                             13.4
      TW_Hya
```

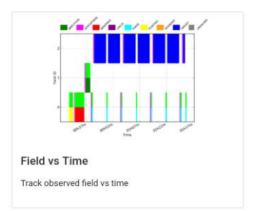
listobs ('calibrated_final.ms')

```
MeasurementSet Name: /scratch/alma/shlee/alma summer/TW Hya/2016.1.00229.5/science goal.uid A001 X87d Xb3b/group.uid A001 X87d Xb3c/member.uid A001 X87d Xb3d/calibrated/calibrated final.ms
                                                                                                                                                                                                      MS Version 2
Project: uid://A001/X5ac/Xba
Observation: ALMA
Data records: 1640000
                         Total elapsed time = 3065.14 seconds
  Observed from 30-Apr-2017/00:41:17.1 to 30-Apr-2017/01:32:22.3 (UTC)
  ObservationID = 0
                           ArrayID = 0
            Timerange (UTC)
                                    Scan FldId FieldName
                                                                             SpwIds Average Interval(s) ScanIntent
                                                                    nRows
 30-Apr-2017/00:41:17.1 - 00:47:51.8
                                             2 TW Hya
                                                                             [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE
                                             2 TW Hya
             00:49:09.4 - 00:55:44.0
                                                                             [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE
             00:58:02.6 - 01:04:37.3
                                             2 TW Hya
                                                                             [0.1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
            01:05:53.4 - 01:12:28.1
                                             2 TW Hya
                                                                             [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE]
            01:14:41.0 - 01:21:15.6
                                                                             [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE]
                                             2 TW Hya
            01:22:31.5 - 01:29:06.2
                                     23
                                             2 TW Hya
                                                                             [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05, 6.05] [OBSERVE TARGET#ON SOURCE]
             01:31:21.8 - 01:32:22.3
                                     27
                                                                             [0,1,2,3,4] [6.05, 6.05, 6.05, 6.05] [OBSERVE_TARGET#ON_SOURCE]
                                             2 TW Hya
          (nRows = Total number of rows per scan)
Fields: l
     Code Name
                                             Dec1
                                                           Epoch SrcId
                                                                             nRows
      none TW Hya
                             11:01:51.812563 -34.42.17.27561 ICRS
                                                                            1649999
Spectral Windows: (5 unique spectral windows and 1 unique polarization setups)
                                                #Chans
                                                        Frame
                                                                Ch0(MHz)
                                                                         ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) BBC Num Corrs
        X2074619945#ALMA RB 06#BB 2#SW-01#FULL RES
                                                   128
                                                        TOPO 219875.479
                                                                            -15625.000
                                                                                       2000000.0 218083.2912
                                                                                                                   2 XX YY
                                                                                       2000000.0 234278.7202
        X2074619945#ALMA RB 06#BB 4#SW-01#FULL RES
                                                   128
                                                        TOPO
                                                              233286.533
                                                                            15625.000
                                                                                                                   4 XX YY
        X2074619945#ALMA RB 06#BB 1#SW-01#FULL RES
                                                  1920
                                                        TOPO
                                                              228437.264
                                                                              -61.035
                                                                                        117187.5 220378.7008
                                                                                                                   1 XX YY
        X2074619945#ALMA RB 06#BB 1#SW-02#FULL RES
                                                  1920
                                                        TOPO
                                                              219598.946
                                                                              -61.035
                                                                                        117187.5 219540.3830
                                                                                                                   1 XX YY
        X2074619945#ALMA RB 06#BB 3#SW-01#FULL RES 3840
                                                        TOPO 231082.493
                                                                               61.035
                                                                                        234375.0 231199.6500
                                                                                                                   3 XX YY
Sources: 15
 ID
      Name
                         SpwId RestFreq(MHz) SysVel(km/s)
      J1037-2934
                              218103.1
      J1037-2934
                              234399
      J1037-2934
                              220398.6842
      J1037-2934
                              219560.358
      J1037-2934
                              231220.686
      J1107-4449
                              228398.6842
      J1107-4449
                              219560.358
      J1107-4449
                              218103.1
      J1107-4449
                              231220.686
      J1107-4449
                              234300
      TW Hya
                              220398.6842
                                            13.4
                              219560.358
                                            13.4
      TW_Hya
                              218103.1
                                            13.4
      TW Hya
      TW_Hya
                              231220.686
                                            13.4
      TW_Hya
                              234300
                                            13.4
ntennas: 40:
      Name Station
                                          Lat.
                                                                                                       ITRF Geocentric coordinates (m)
                     Diam.
                              Long
                                                             Offset from array center (m)
                                                                East
                                                                            North
                                                                                     Elevation
      DA41 A004
                     12.0 m -067.45.15.9 -22.53.28.0
                                                             52.6698
                                                                         -704.4170
                                                                                       21.7721 2225094.796411 -5440052.421403 -2481687.277071
      DA42 A864
                             -067.45.14.7 -22.53.31.4
                                                             85.6572
                                                                         808.0277
                                                                                                2225109.989466 -5440002.411752 -2481782.629929
      DA43 A005
                     12.0 m -067.45.14.8 -22.53.28.7
                                                             83.3310
                                                                         -725.0764
                                                                                       21.7245 2225120.123607 -5440033.332230 -2481706.291028
```


By Topic By Task

Session: session_1


uid__A002_Xbfcd9b_X70c_target.ms


Overview of 'uid___A002_Xbfcd9b_X70c.ms'

Observation Execution Time

Start Time	2017-04-30 00:27:21	
End Time	2017-04-30 01:32:41	
Total Time on Source	0:56:56	
Total Time on Science Target	0:40:32	

LISTOBS OUTPUT

Spatial Setup

'TW_Hya' Science Targets Calibrators 'J1037-2934' and 'J1107-4449'

Spectral Setup

All Bands 'ALMA Band 6' and 'WVR' Science Bands 'ALMA Band 6'

Antenna Setup

Min Baseline	15.1 m
Max Baseline	460.0 m
Number of Baselines	780
Number of Antennas	40

Sky Setup

Min Elevation	67.28 degrees	
Max Elevation	83.36 degrees	

All Windows

Frequency (TOPO)			Channels (TOPO)							
ID	Start	Centre	End	Bandwidth (TOPO)	Number	Frequency Width	Velocity Width	Correlator Axis	Band	Intents
0	220.538 GHz	221.538 GHz	222.538 GHz	2.000 GHz	1	2.000 GHz	2706.465 km/s	XX, YY	ALMA Band 6	POINTING, WVR
1	222.538 GHz	223.538 GHz	224.538 GHz	2.000 GHz	1	2.000 GHz	2682.251 km/s	XX, YY	ALMA Band 6	POINTING, WVR
2	236.538 GHz	237.538 GHz	238.538 GHz	2.000 GHz	1	2.000 GHz	2524.164 km/s	XX, YY	ALMA Band 6	POINTING, WVR
3	238.538 GHz	239.538 GHz	240.538 GHz	2.000 GHz	1	2.000 GHz	2503.089 km/s	XX, YY	ALMA Band 6	POINTIMO
4	183.800 GHz	187.550 GHz	191.300 GHz	7.500 GHz	4	1.500 GHz	2397.700 km/s	XX	WVR	ASE, POINTING, TARGET, WVR
5	220.538 GHz	221.538 GHz	222.538 GHz	2.000 GHz	128	15.625 MHz	21.144 km/s	XX, YY	أأدء	place
6	220.624 GHz	221.515 GHz	222.405 GHz	1.781 GHz	1	1.781 GHz	2410.701 km/s	XX, YY	or Can	viing, WVR
7	222.538 GHz	223.538 GHz	224.538 GHz	2.000 GHz	128	15.625 MHz	20.955 km/s	-INS T		POINTING, WVR
8	222.624 GHz	223.515 GHz	224.405 GHz	1.781 GHz	1	1.781 GHz	21	5000	ALMA Band 6	POINTING, WVR AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
9	236.538 GHz	237.538 GHz	238.538 GHz	2.000 GHz	128	15.625 MHz	wany.		ALMA Band 6	POINTING, WVR
10	236.624 GHz	237.515 GHz	238.405 GHz	1.781 GHz	1	, bas 1	110.	XX, YY	ALMA Band 6	POINTING, WVR
11	238.538 GHz	239.538 GHz	240.538 GHz	2.000 GHz		V Mas	19.555 km/s	XX, YY	ALMA Band 6	POINTING, WVR
12	238.624 GHz	239.515 GHz	240.405 GHz	1.781 GHz	TIAI		2229.532 km/s	XX, YY	ALMA Band 6	POINTING, WVR
13	218.960 GHz	219.960 GHz	220.960 GHz	2.000 GHz		2.000 GHz	2725.887 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
14	217.083 GHz	218.083 GHz	219.083 GHz	2.000 GHz	1	2.000 GHz	2749.339 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
15	230.959 GHz	231.959 GHz	232.959 GHz	2.000 GHz	1	2.000 GHz	2584.875 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
16	233.279 GHz	234.279 GHz	235.279 GHz	2.000 GHz	1	2.000 GHz	2559.280 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
17	218.960 GHz	219.960 GHz	220.960 GHz	2.000 GHz	128	15.625 MHz	21.296 km/s	XX, YY	ALMA Band 6	ATMOSPHERE
18	219.014 GHz	219.952 GHz	220.889 GHz	1.875 GHz	1	1.875 GHz	2555.610 km/s	XX, YY	ALMA Band 6	ATMOSPHERE
19	217.083 GHz	218.083 GHz	219.083 GHz	2.000 GHz	128	15.625 MHz	21.479 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
20	217.169 GHz	218.068 GHz	218.966 GHz	1.797 GHz	1	1.797 GHz	2470.286 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
21	230.959 GHz	231.959 GHz	232.959 GHz	2.000 GHz	128	15.625 MHz	20.194 km/s	XX, YY	ALMA Band 6	ATMOSPHERE
22	231.014 GHz	231.951 GHz	232.889 GHz	1.875 GHz	1	1.875 GHz	2423.402 km/s	XX, YY	ALMA Band 6	ATMOSPHERE
23	233.279 GHz	234.279 GHz	235.279 GHz	2.000 GHz	128	15.625 MHz	19.994 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
24	233.365 GHz	234.263 GHz	235.162 GHz	1.797 GHz	1	1.797 GHz	2299.507 km/s	XX, YY	ALMA Band 6	AMPLITUDE, ATMOSPHERE, BANDPASS, PHASE, TARGET, WVR
25	220.320 GHz	220.379 GHz	220.437 GHz	117.188 MHz	1920	61.035 kHz	83.029 m/s	XX, YY	ALMA Band 6	AMPLITUDE, BANDPASS, PHASE, TARGET, WVR
26	220.320 GHz	220.379 GHz	220.437 GHz	117.188 MHz	1	117.188 MHz	159.416 km/s	XX, YY	ALMA Band 6	AMPLITUDE, BANDPASS, PHASE, TARGET, WVR
27	219.482 GHz	219.540 GHz	219.599 GHz	117.188 MHz	1920	61.035 kHz	83.346 m/s	XX, YY	ALMA Band 6	AMPLITUDE, BANDPASS, PHASE, TARGET, WVR
28	219.482 GHz	219.540 GHz	219.599 GHz	117.188 MHz	1	117.188 MHz	160.025 km/s	XX, YY	ALMA Band 6	AMPLITUDE, BANDPASS, PHASE, TARGET, WVR
29	231.082 GHz	231.200 GHz	231.317 GHz	234.375 MHz	3840	61.035 kHz	79.143 m/s	XX, YY	ALMA Band 6	AMPLITUDE, BANDPASS, PHASE, TARGET, WVR
30	231.082 GHz	231.200 GHz	231.317 GHz	234.375 MHz	1	234.375 MHz	303.910 km/s	XX, YY	ALMA Band 6	AMPLITUDE, BANDPASS, PHASE, TARGET, WVR

All Spectral Windows in uid__A002_Xbfcd9b_X70c.ms

Spectral Setup Details

BACK

Science Windows

All Windows

Science Windows

	Frequency (TOPO)				Channels (TOP	0)			
ID	Start	Centre	End	Bandwidth (TOPO)	Number	Frequency Width	Velocity Width	Correlator Axis	Band
19	217.083 GHz	218.083 GHz	219.083 GHz	2.000 GHz	128	15.625 MHz	21.479 km/s	XX, YY	ALMA Band 6
23	233.279 GHz	234.279 GHz	235.279 GHz	2.000 GHz	128	15.625 MHz	19.994 km/s	XX, YY	ALMA Band 6
25	220.320 GHz	220.379 GHz	220.437 GHz	117.188 MHz	1920	61.035 kHz	83.029 m/s	XX, YY	ALMA Band 6
27	219.482 GHz	219.540 GHz	219.599 GHz	117.188 MHz	1920	61.035 kHz	83.346 m/s	XX, YY	ALMA Band 6
29	231.082 GHz	231.200 GHz	231.317 GHz	234.375 MHz	3840	61.035 kHz	79.143 m/s	XX, YY	ALMA Band 6

Spectral Windows with Science Intent in uid___A002_Xbfcd9b_X70c.ms

By Topic

Session: session_1

Spectral Setup Details

BACK

2019.1.00720.S

Science Windows

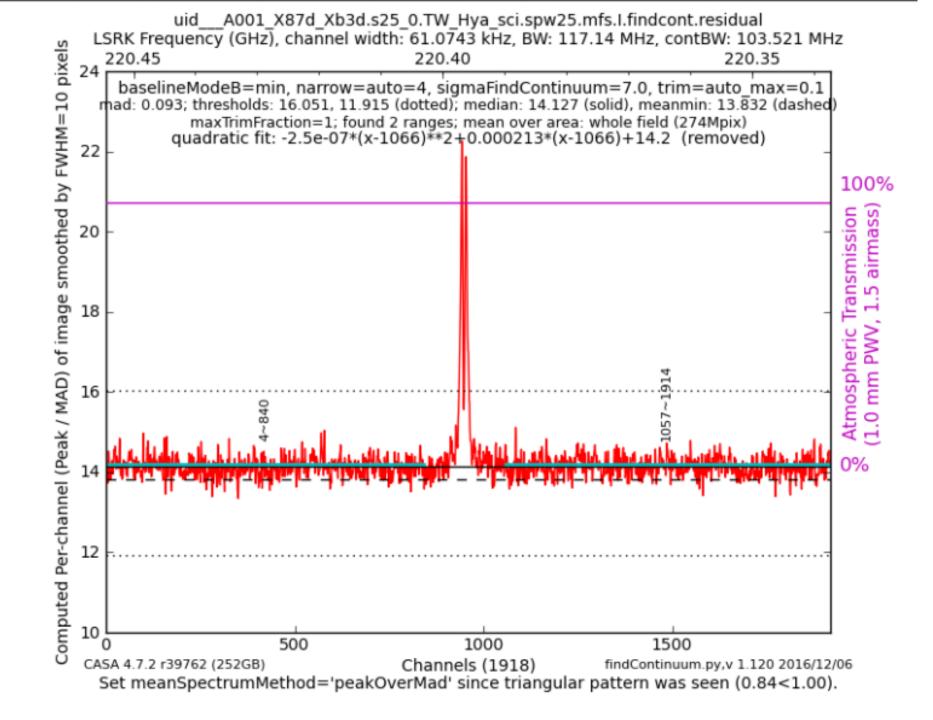
All Windows

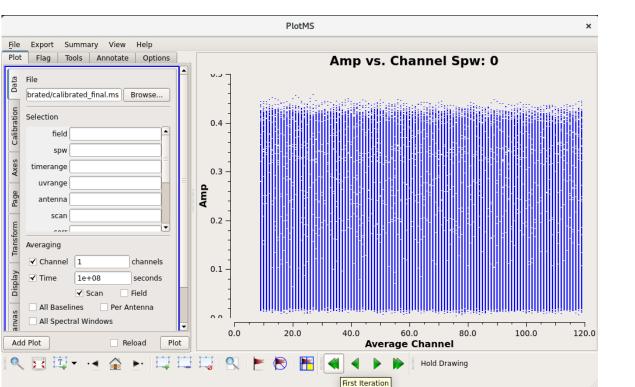
Science Windows

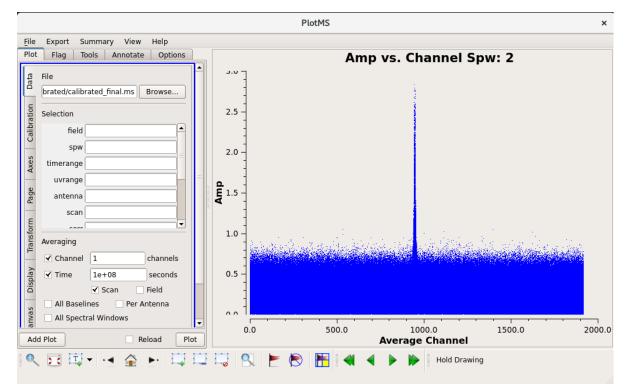
				Frequency (Frequency (TOPO)					Channels (TOPO)				
Real ID	Virtual ID	Name	Туре	Start	Centre	End	Bandwidth (TOPO)	Transitions	Number	Frequency Width	Velocity Width	Correlator Axis	Band	Band Type
23	23	X176064364#ALMA_RB_07#BB_4#SW- 01	TDM	302.471 GHz	303.471 GHz	304.471 GHz	2.000 GHz	ContForCal(ID=0)	128	15.625 MHz	15.436 km/s	XX, YY	ALMA Band 7	TSB
25	25	X176064364#ALMA_RB_07#BB_1#SW- 01	FDM	316.665 GHz	316.782 GHz	316.899 GHz	234.375 MHz	D2O_1(1,0)-1(0,1)(ID=4104568)	1920	122.070 kHz	115.523 m/s	XX, YY	ALMA Band 7	TSB
27	27	X176064364#ALMA_RB_07#BB_2#SW- 01	FDM	315.831 GHz	316.066 GHz	316.300 GHz	468.750 MHz	13CH3OH_v_t=0_10(-1,10)-9(0,9)(ID=575176), 13CH3OH_v_t=1_4(1,4)-5(2,3)_++(ID=3764462)	960	488.281 kHz	463.141 m/s	XX, YY	ALMA Band 7	TSB
29	29	X176064364#ALMA_RB_07#BB_2#SW- 02	FDM	315.767 GHz	316.001 GHz	316.235 GHz	468.750 MHz	13CH30H_v_t=1_4(1,4)-5(2,3)_++(ID=3764462), 13CH30H_v_t=0_10(-1,10)-9(0,9)(ID=575176)	960	488.281 kHz	463.236 m/s	XX, YY	ALMA Band 7	TSB
31	31	X176064364#ALMA_RB_07#BB_3#SW- 01	FDM	301.505 GHz	301.739 GHz	301.973 GHz	468.750 MHz	13CH3OH_v_t=0_8_(2,6)-7_(-2,6)(ID=575128)	1920	244.141 kHz	242.566 m/s	XX, YY	ALMA Band 7	TSB

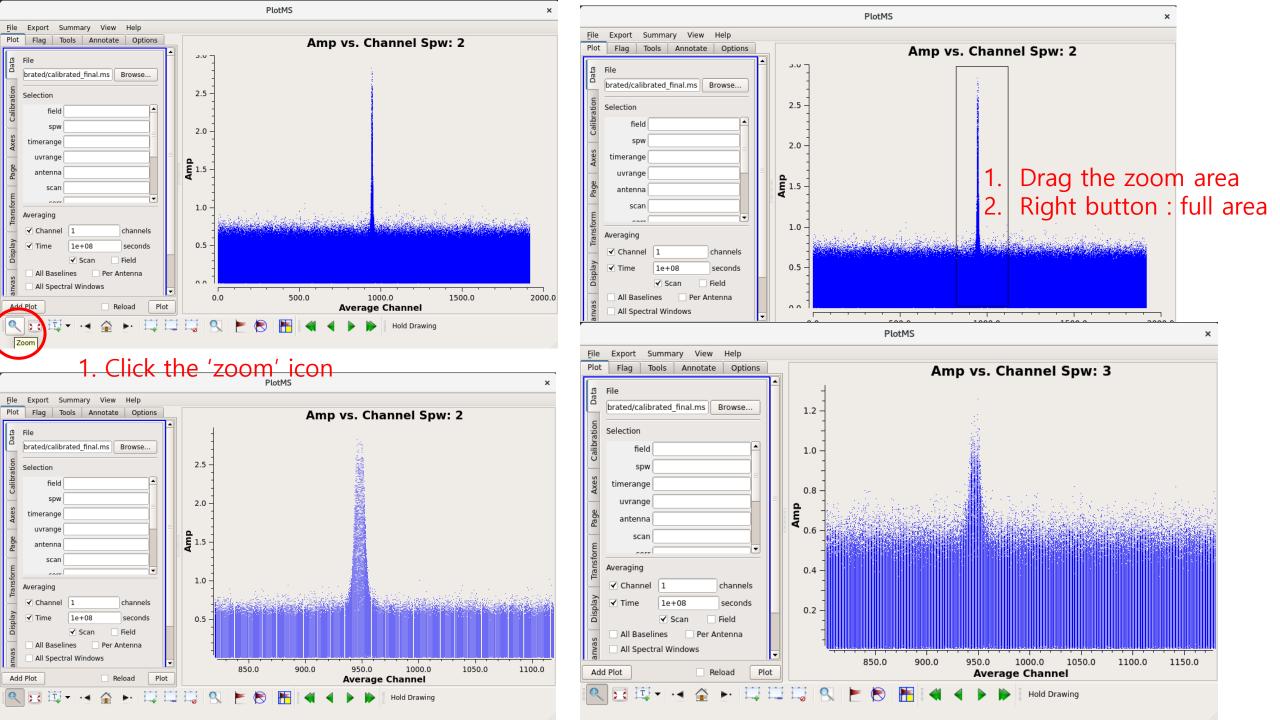
Spectral Windows with Science Intent in uid___A002_Xe1f219_X78a6.ms

You can find which spw targeted line is in.


Task Summaries


- View, view in new tab or download casa-20170503-212520.log (8.5 MB)
- View, view in new tab or download casa-20170504-123945.log (5.4 MB)
- View, yiew in new tab or download casa_commands.log (93.9 KB)
- View, view in new tab or download casa_piperscript.py (1.5 KB)
 View, view in new tab or download casa_piperestorescript.py (163 bytes)


Tasks in execution order				Continuum Frequency Range				
1. hifa_importdata		Field	Spw	Start	End	Frame	Status	Average spectrum
2. hifa_flagdata		Field	ори	start	Life	ridire	Status	Aretuge opecitum
hifa_fluxcalflag		TW_Hya	19	217.28772 GHz	218.88165 GHz	LSRK	NEW	(100 to 100 to 1
1. hif_rawflagchans								Application of the control of the co
i. hif_refant								Ma . Ma as as
5. hifa_tsyscal								
7. hifa_tsysflag	0							1 al.
l. hifa_antpos	Θ							
hifa_wvrgcalflag								The second secon
10. hif_lowgainflag			23	233.51566 GHz	235.10960 GHz			(III) 1601_001_1505_00161_2_0156_00_3_00_00000000000000000000000000000
11. hif_gainflag								Approximately-comp, synthem solved in grandom company 1-1 (commands shared by the solution of
12. hif_setjy								The state of the s
13. hifa_bandpass								- MANAMATINE
14. hifa_spwphaseup						Line cha	nnol	No.
15. hifa_gfluxscale								8 000
16. hifa_timegaincal						For uvco	ntsub	(2) (2) (3) (4)
17. hif_applycal			25	220.33751 GHz	220.38992 GHz			and the second state of th
18. hif_makeimlist			25	220,53751 GHZ	220.30392 GHZ			p. (All 4). The proposed state of the propo
19. hif_makeimages							N	3 m 100m
20. hif_checkproductsize								m No. 1 To an annual of the control
21. hif_exportdata				220.40311 GHz	220.45423 GHz			The standard of the standard o
22. hif_mstransform								a particular and a second seco
23. hifa_flagtargets								The second secon
24. hif_makeimlist	- W W W P							Set descriptions/fellines participant and damping participants and control to the
25. hif_findcont	<u> </u>		27	219.49913 GHz	219.55166 GHz			Control Contro
26. hif_uvcontfit								ember of the Device of the state of the stat
27. hif_uvcontsub								A CONTRACTOR OF THE CONTRACTOR
8. hif_makeimages				219.56479 GHz	219.61584 GHz			
29. hif_makeimlist				20 C C C C C C C C C C C C C C C C C C C				and the state of t
80. hif_makeimages 81. hif_makeimlist								a hard a high configuration of a responsible from a summer


Line channels for uvcontsub

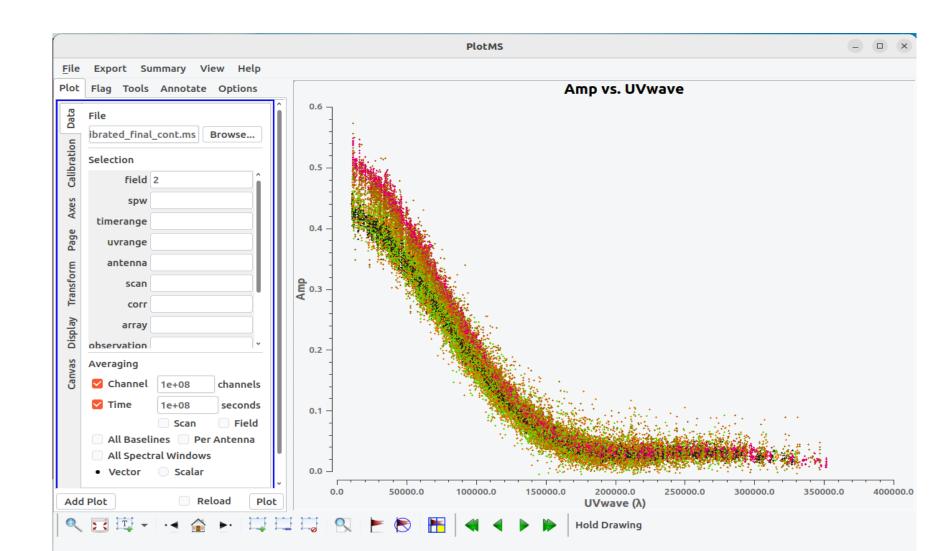
SPWs of 19,23,25,27 are renamed with 0,1,2,3

Preparing the continuum ms file (1).

```
# Flag the "line channels"
flagchannels='2:851\sim1049,3:851\sim1049' # In this example , spws 2&3 have a line
d 2199 and spectral windows 0 and 1 are line-free.
flagdata(vis=finalvis,mode='manual',
           spw=flagchannels,flagbackup=False)
  check that flags are as expected, NOTE must check reload on plotms
                                                                                               Amp vs. Channel
  qui if its still open.
plotms(vis=finalvis,yaxis='amp',xaxis='channel',
        avgchannel='1',avgtime='1e8',avgscan=True,spw='2')
         avgchannel='1',avgtime='1e8',avgscan=True,iteraxis='spw')
                                                      timerange
                                                                             0.6
                                                       uvrange
    1. Flag (delete) line channels.
                                                       antenna
                                                         scan
                                                                             0.4

✓ Channel 1

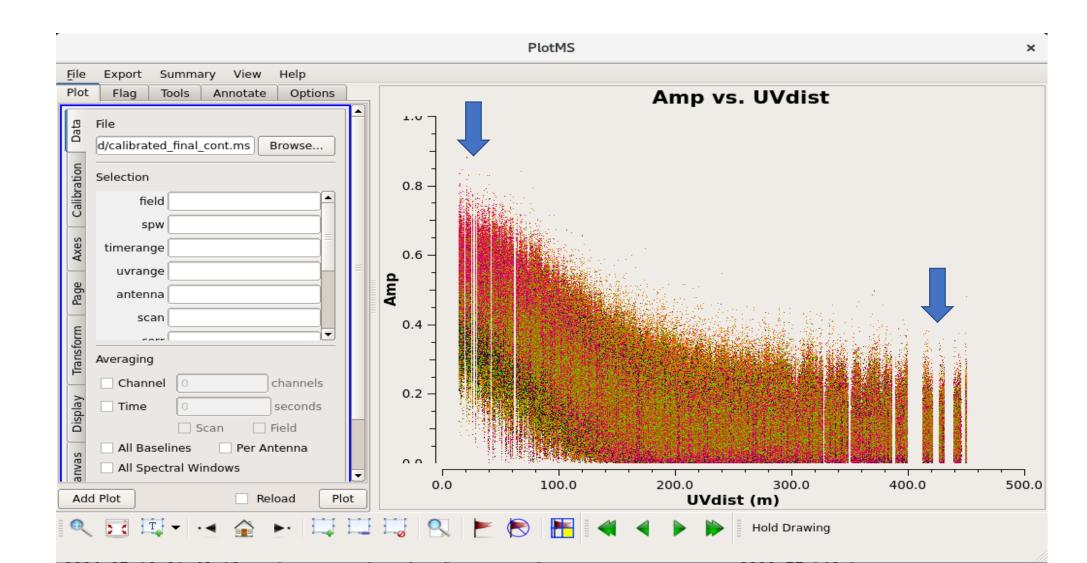
                                                                   channels
                                                                             0.2 -
                                                       All Spectral Windows
                                                                                                               1500.0
                                                                                          500.0
                                                                                                    1000.0
                                                                                                                          2000.0
```


Reload

Average Channel

Preparing the continuum ms file.

```
#>>> Note that to mitigate bandwidth smearing, please keep the width
#>>> of averaged channels less than 125MHz in Band 3, 4, and 6, and 250MHz
#>>> in Band 7 for both TDM and FDM modes. For example, for a 2GHz TDM window
#>>> with 15.625 MHz channels, this means that the maximum width parameter
#>>> should be 8 channels for Bands 3, 4, and 6 and 16 channels for Band 7.
#>>> This is especially important for any long baseline data. These limits
#>>> have been designed to have minimize the reduction of the peak flux to
#>>> 95%. See the "for continuum" header for more information on the imaging
#>>> wiki for more infomration.
#>>> Note that in CASA 5.1, split2 is now split. Previously split2 was
#>>> needed to deal correctly with channelized weights.
split(vis=finalvis,
     spw=contspws,
     outputvis=contvis,
      width=[16,16,1920,1920,3840], # number of channels to average together. The final
channel width should be less than 125MHz in Bands 3, 4, and 6 and 250MHz in Band 7.
     datacolumn='data')
```


Check UV distance(wave) vs. Amp

Check UV distance(wave) vs. Amp

Discreate UV coverage might produce some features...

Tasks in execution order

- hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- hif_rawflagchans
- 5. hif_refant
- 6. hifa_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_gainflag 12. hif_setjy
- 13. hifa_bandpass
- 14. hifa_spwphaseup
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist
- 19. hif_makeimages
- 20. hif_checkproductsize
- 21. hif_exportdata
- 22. hif_mstransform
- 23. hifa_flagtargets

24. hif_makeimlist

- 25. hif_findcont
- 26. hif_uvcontfit
- 27. hif_uvcontsub 28. hif_makeimages
- 29. hif_makeimlist
- 30. hif_makeimages
- 31. hif_makeimlist
- 32. hif_makeimages

24. Make image list

Set-up image parameters for target per-spw continuum imaging

Cell and Image sizes used in tclean

ist of.	Clean	Targets
---------	-------	---------

_												
field	intent	spw	phasecenter	cell imsize m		nagename	specmode	start	width	nbin	nchan	uvrange
TW_Hya	TARGET	19	ICRS 11:01:51.8126 -034.42.17.276	['0.12arcsec']	[378, 378]	idA001_X87d_Xb3d.sSTAGENUMBER.TW_Hya_sci.spw19.mfs	mfs			-1	-1	
TW_Hya	TARGET	23	ICRS 11:01:51.8126 -034.42.17.276	['0.12arcsec']	[378, 378]	idA001_X87d_Xb3d.sSTAGENUMBER.TW_Hya_sci.spw23.mfs	mfs			-1	-1	
TW_Hya	TARGET	25	ICRS 11:01:51.8126 -034.42.17.276	['0.12arcsec']	[378, 378]	idA001_X87d_Xb3d.sSTAGENUMBER.TW_Hya_sci.spw25.mfs	mfs			-1	-1	
TW_Hya	TARGET	27	ICRS 11:01:51.8126 -034.42.17.276	['0.12arcsec']	[378, 378]	idA001_X87d_Xb3d.sSTAGENUMBER.TW_Hya_sci.spw27.mfs	mfs			-1	-1	
TW_Hya	TARGET	29	ICRS 11:01:51.8126 -034.42.17.276	['0.12arcsec']	[378, 378]	idA001_X87d_Xb3d.sSTAGENUMBER.TW_Hya_sci.spw29.mfs	mfs			-1	-1	

Clean Targets Summary

Pipeline QA

Input Parameters

Tasks Execution Statistics

CASA logs for stage 24

View or download stage24/casapy.log (10.5 KB)

BACK

By Task

Tasks in execution order

- hifa restoredata
- 2. hif_mstransform
- 3. hifa_flagtargets

- hif_checkproductsize
- 6. hif_makeimlist (mfs)
- 7. hif_findcont
- 8. hif_uvcontfit
- 9. hif_uvcontsub
- 10. hif_makeimages (mfs)
- 11. hif_makeimlist (cont)
- 12. hif_makeimages (cont)
- 13. hif_makeimlist (cube)
- 14. hif_makeimages (cube)
- 15. hif_makeimlist (cube_repBW)
- 16. hif_makeimages (cube_repBW)

Representative Target: B335

Representative Frequency: 316.7910 GHz (SPW 25)

Bandwidth for Sensitivity: 1.057 MHz (rounded to nearest integer #channels (9), repBW = 1.099 MHz)

Min / Max Acceptable Resolution: 0.300 arcsec / 0.500 arcsec

Maximum expected beam axial ratio (from OT): 1.5

Goal PI sensitivity: 2.50 mJy Single Continuum: False

Beam sized and theorical rms level according to robust parameter.

Estimated Synthesized Beam and Sensitivities for the Representative Target/Frequency

Estimates are given for four possible values of the tclean robust weighting parameter: robust = 0.0, +0.5 (default), +1.0, and +2.0. If the "Min / Max Acceptable Resolution" is available (>=Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas according to the table row for repBW (Bandwidth for Sensitivity) is chosen. If none of these robust values predict a beam area that is in range, robust=+2.0 is chosen if the predicted beam area is too small, and robust=0.0 is chosen if the predicted beam area is too large. The chosen robust value is highlighted in green and used for all science target imaging. In addition to an estimate for the repBW, an estimate for the aggregate continuum bandwidth (aggBW) is also given assuming NO line contamination but accounting for spw frequency overlap. If the Bandwidth for Sensitivity (repBW) is > the bandwidth of the spw containing the representative frequency (repSPW), then the beam is predicted using all spws, otherwise the beam is predicted for the repSPW alone. A message appears on the "By Task" view if a non-default value of robust (i.e., not +0.5) is chosen. Additionally, if the predicted beam is not within the PI requested range using one of the four robust values, Warning messages appear on this page.

These estimates should always be considered as the BEST CASE SCENARIO. These estimates account for Tsys, the observed uv-coverage, and prior flagging. The estimates DO NOT account for (1) subsequent science target flagging; (2) loss of continuum bandwidth due to the hif_findcont process (i.e. removal of lines and other spectral features from the data used to image the continuum); (3) Issues that affect the image quality like (a) poor match of uv-coverage to image complexity; (b) dynamic range effects; (c) calibration deficiencies (poor phase transfer, residual baseline based effects, residual antenna position errors, etc.). It is also important to note that both the repBW and aggBW beam calculations are intrinsically multi-frequency synthesis continuum calculations, using the relevant spws as described above. The synthesized beam for a single channel in a cube will typically be larger and can be significantly larger depending on the details of uv-coverage and channel width.

robust	uvtaper	Synthesized Beam	Cell		Bandwidth	BW Mode	Effective Sensitivity
0.0	0	0.356 x 0.312 arcsec @ -49.8 deg	0.062 x 0.062 arcsec	1.14	1.099 MHz	repBW	0.0021 Jy/beam
0.0	0	0.346 x 0.312 arcsec @ -58.2 deg	0.062 x 0.062 arcsec	1.14	3237 MHz		3.67e-05 Jy/beam
0.5	0	0.372 x 0.343 arcsec @ -51.3 deg	0.069 x 0.069 arcsec	1.08	1.099 MHz	repBW	0.00173 Jy/beam
0.5	0	0.374 x 0.353 arcsec @ -53.7 deg	0.071 x 0.071 arcsec	1.08	3237 MHz	aggBW	2.93e-05 Jy/beam
1.0	0	0.407 x 0.393 arcsec @ -8.71 deg	0.079 x 0.079 arcsec	1.04	1.099 MHz	repBW	0.00159 Jy/beam
1.0	0	0.419 x 0.405 arcsec @ -3.74 deg	0.081 x 0.081 arcsec	1.04	3237 MHz	aggBW	2.68e-05 Jy/beam
2.0	0	0.432 x 0.408 arcsec @ 4.19 deg	0.082 x 0.082 arcsec	1.06	1.099 MHz	repBW	0.00158 Jy/beam
2.0	0	0.447 x 0.425 arcsec @ 12.2 deg	0.085 x 0.085 arcsec	1.06	3237 MHz	aggBW	2.65e-05 Jy/beam

Tasks in execution order

- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. hifa_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_gainflag
- 12. hif_setjy
- 13. hifa_bandpass
- 14. hifa_spwphaseup
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal18. hif_makeimlist
- 19. hif_makeimages
- 20. hif_checkproductsize
- 21. hif_exportdata
- 22. hif_mstransform
- 23. hifa_flagtargets
- 24. hif_makeimlist
- 25. hif_findcont
- 26. hif_uvcontfit
- 27. hif_uvcontsub
- 28. hif_makeimages

29 hif makeimlist

- 30. hif_makeimages
- 31. hif_makeimlist
- 32. hif_makeimages

29. Make image list

Set-up image parameters for target aggregate continuum imaging

BACK

List of Clean Targets

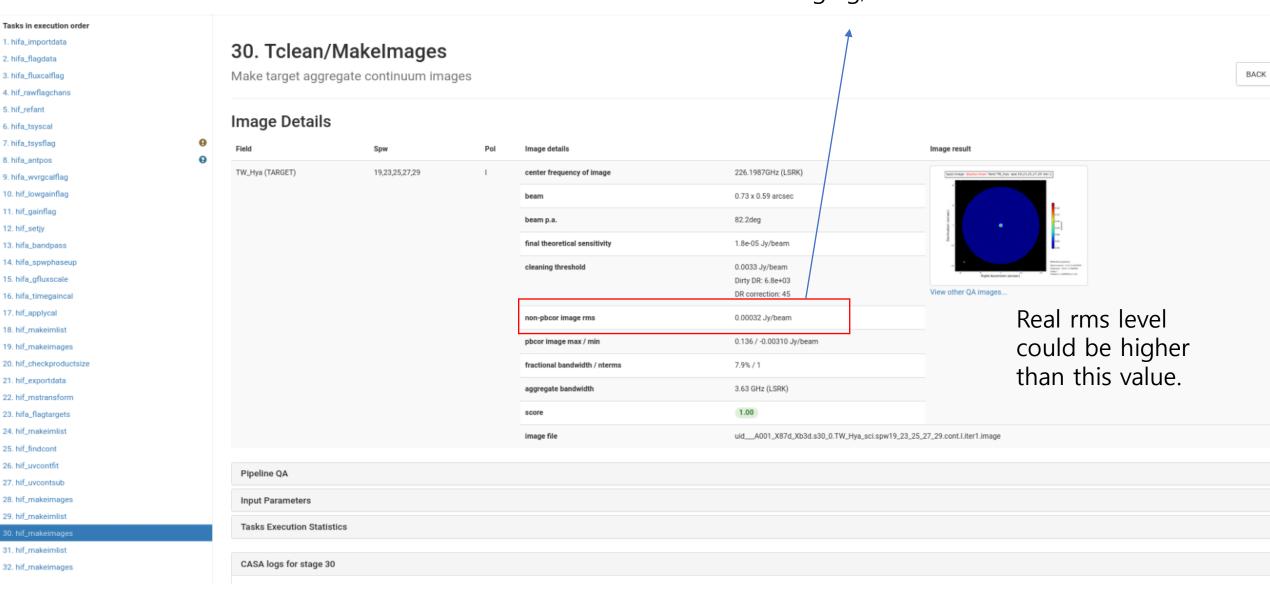
field	intent	spw	phasecenter	cell	imsize	Imagename	specmode	start	width	nbin	nchan	uvrange
TW_Hya	TARGET	19,23,25,27,29	ICRS 11:01:51.8126 -034.42.17.276	['0.12arcsec']	[378, 378]	uidA001_X87d_Xb3d.sSTAGENUMBER.TW_Hya_sci.spw19_23_25_27_29.cont	cont			-1	-1	

Clean Targets Summary

Pipeline QA

θ

Θ


Input Parameters

Tasks Execution Statistics

CASA logs for stage 29

View or download stage29/casapy.log (13.2 KB)

For line imaging, set threshold = 3 rms level

tclean for continuum image

```
source parameters
field='2' # science field(s). For a mosaic, select all mosaic fields. DO NOT LEAVE BLANK
 ('') OR YOU WILL POTENTIALLY TRIGGER A BUG IN CLEAN THAT WILL PUT THE WRONG COORDINATE
SYSTEM ON YOUR FINAL IMAGE.
gridder='standard' # uncomment if single field
# gridder='mosaic' # uncomment if mosaic or if combining one 7m and one 12m pointing.
cell='0.12arcsec' # cell size for imaging.
imsize = [378,378] # size of image in pixels.
# velocity parameters
outframe='lsrk' # velocity reference frame.
veltype='radio' # velocity type.
# imaging control
# The cleaning below is done interactively, so niter and threshold can
# be controlled within clean.
weighting = 'briggs'
robust=0.5
niter=1000
threshold = '0.0mJy'
```

```
contvis = 'calibrated final cont.ms'
contimagename = 'cont'
tclean(vis=contvis,
       imagename=contimagename,
       field=field,
          phasecenter=phasecenter, #
       specmode='mfs',
       deconvolver='hogbom',
       #deconvolver='mtmfs',
       #nterms=2,
       imsize = imsize,
       cell= cell,
       weighting = weighting,
       robust = robust,
       niter = niter,
       threshold = threshold,
       interactive = True,
       gridder = gridder,
       pbcor = True,
       usepointing=False)
```

Deconvolver

hogbom : default

clark

clarkstokes: for polarization **multiscale**: Extented sources

scales =[0,5,15] (in unit of pixel)

[point, beam size, $3\sim5$ x beamsize]

mtmfs: Multiterm(multiscale) + multifrequency too broad frequency is covered in the continuum imaging and emission varies with frequency.

Search docs

Release Information

Index

API (tasks, tools, GUIs, etc.)

☐ Task List (shortcut)

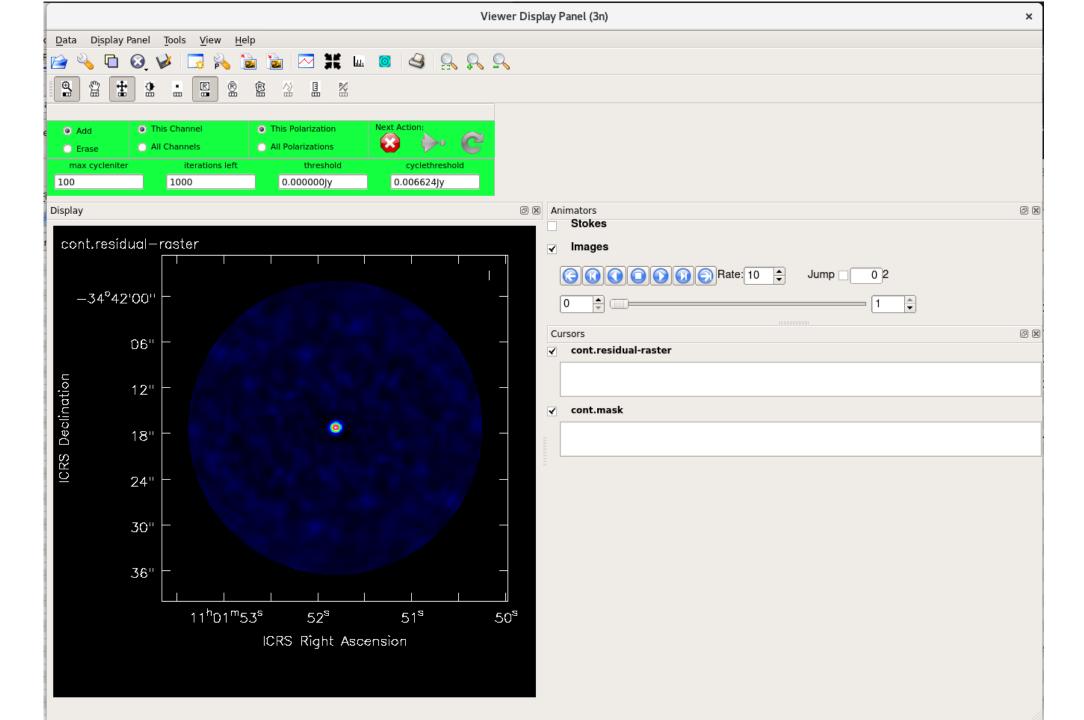
Input / Output

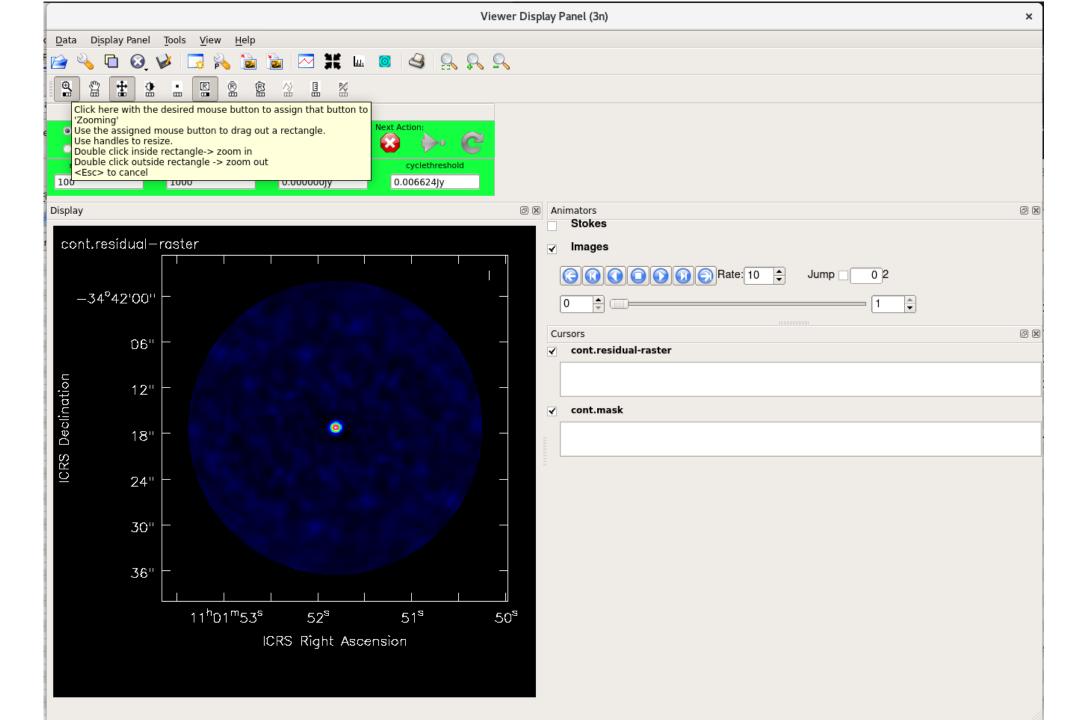
Information

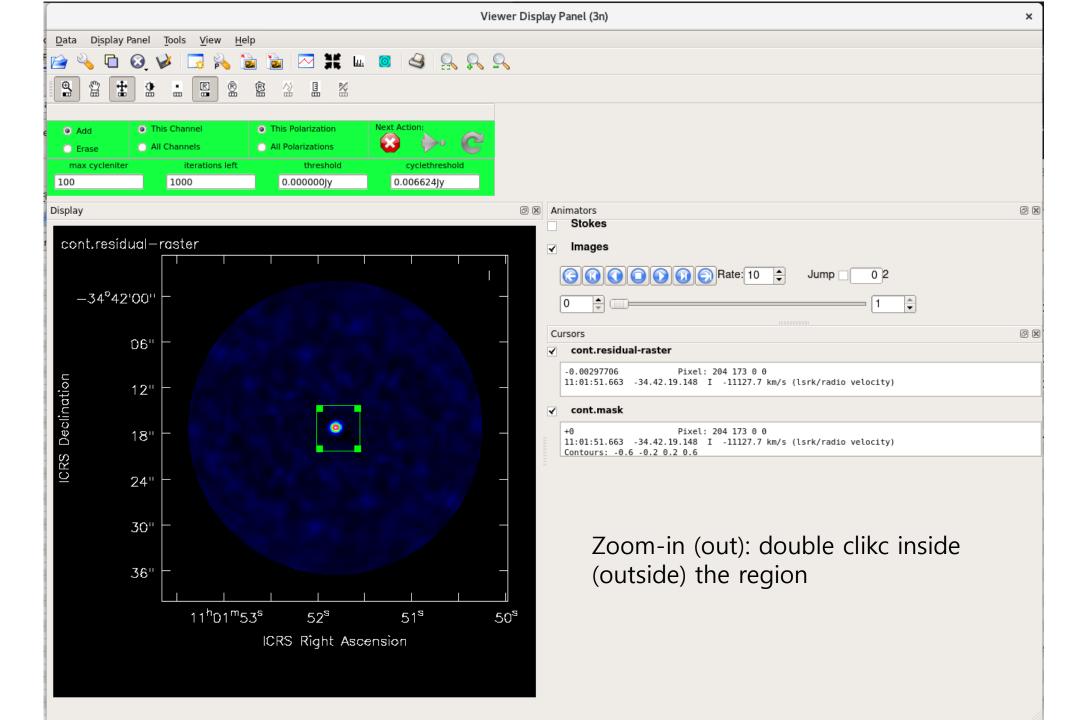
Flagging

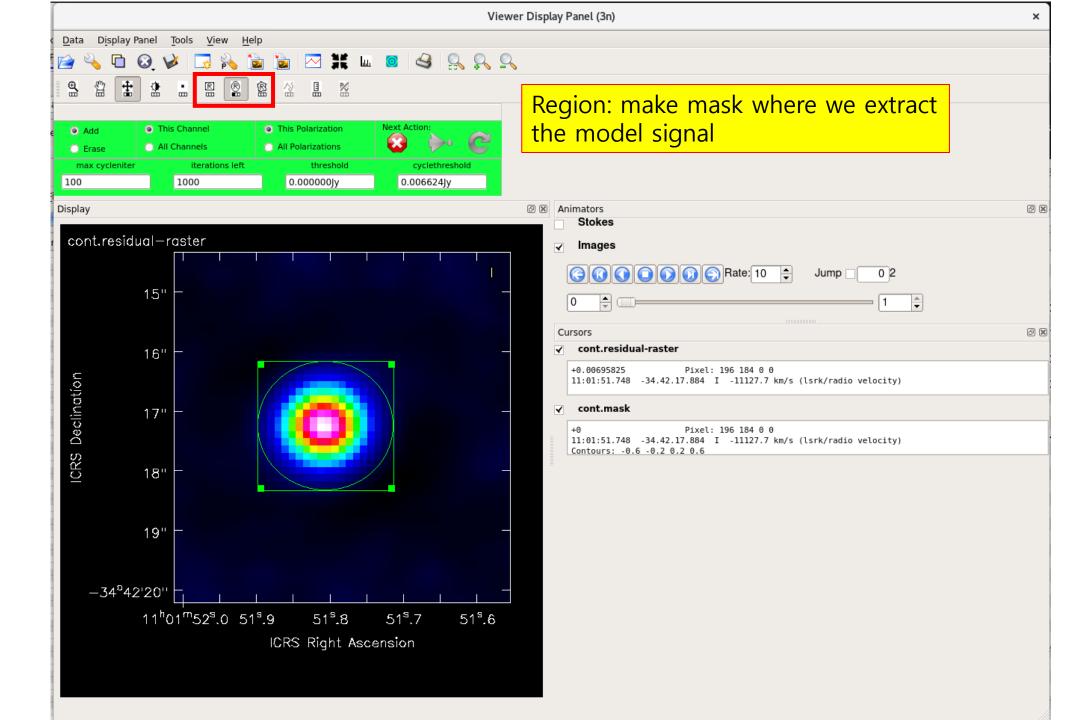
Calibration

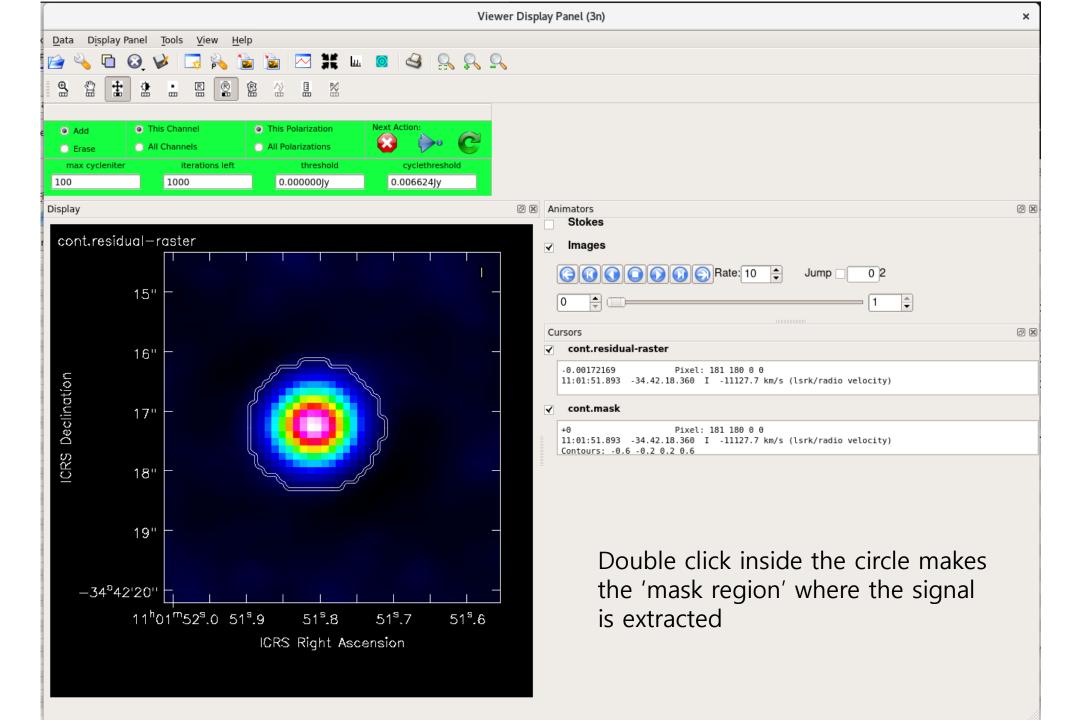
☐ Imaging


API (tasks, tools, GUIs, etc.) / casatasks / tclean


C Edit on GitHub


tclean


tclean(vis, selectdata=True, field=", spw=", timerange=", uvrange=", antenna=", scan=", observation=", intent=", datacolumn='corrected', imagename=", imsize=[100], cell="1arcsec", phasecenter=", stokes='I', projection='SIN', startmodel=", specmode='mfs', reffrea=", nchan=-1, start=", width=", outframe='LSRK', veltype='radio', restfreq=", interpolation='linear', perchanweightdensity=True, gridder='standard', facets=1, psfphasecenter=", wprojplanes=1, vptable=", mosweight=True, aterm=True, psterm=False, wbawp=True, conjbeams=False, cfcache=", usepointing=False, computepastep=360.0, rotatepastep=360.0, pointingoffsetsigdev=", pblimit=0.2, normtype='flatnoise', deconvolver='hogbom', scales=", nterms=2, smallscalebias=0.0, fusedthreshold=0.0, largestscale=-1, restoration=True, restoringbeam=", pbcor=False, outlierfile=", weighting='natural', robust=0.5, noise='1.0Jy', npixels=0, uvtaper=["], niter=0, gain=0.1, threshold=0.0, nsigma=0.0, cycleniter=-1, cyclefactor=1.0, minpsffraction=0.05, maxpsffraction=0.8, interactive=False, nmajor=-1, fullsummary=False, usemask='user', mask=", pbmask=0.0, sidelobethreshold=3.0, noisethreshold=5.0, lownoisethreshold=1.5, negativethreshold=0.0, smoothfactor=1.0, minbeamfrac=0.3, cutthreshold=0.01, growiterations=75, dogrowprune=True, minpercentchange=-1.0, verbose=False, fastnoise=True, restart=True, savemodel='none', calcres=True, calcpsf=True, psfcutoff=0.35, parallel=False)


```
RuntimeError: Error in selectData(): Data selection ended with 0 rows
a ##### Begin Task: tclean
a tclean (vis='calibrated_final_cont.ms', selectdata=True, field='2', spw='', timerange='', uvrange='', antenna='', scan='', obs
a Verifying Input Parameters
 MS : calibrated_final_cont.ms | Selecting on fields : 2 | [Opened in readonly mode]
   NRows selected: 1640000
Leap second table TAI UTC seems out-of-date.
F Until the table is updated (see the CASA documentation or your system admin),
times and coordinates derived from UTC could be wrong by 1s or more.
imsize with 378 pixels is not an efficient imagesize. Try 384 instead.
Define image coordinates for [cont] :
Impars : start
Shape: [378, 378, 1, 1]Spectral: [2.26199e+11] at [0] with increment [1.81969e+10]
Set Gridding options for [cont] with ftmachine : gridft
/ Required memory: 0.007725 GB. Available mem.: 189.6 GB (rc, mem. fraction: 80%, memory: -) => Subcubes: 1. Processes on node
  Set imaging weights : Briggs weighting: sidelobes will be suppressed over full image
 Normal robustness, robust = 0.5
 Set Deconvolution Options for [cont] : hogbom
  [cont] Theoretical sensitivity (Jy/bm):1.58883e-05
  Time to fit Gaussian to PSF 0.007957
  Beam: 0.730786 arcsec, 0.585738 arcsec, 82.91 deg
  vi2 : Evaluating Primary Beam model onto image grid(s)
                                                           Run Major Cycle 1 -----
  Absolute Peak residual within mask: 0.123077, over full image: 0.123077
  [cont] Initializing new mask to 0.0 for interactive drawing
  [cont] Number of pixels in the clean mask: 0 out of a total of 142884 pixels. [0 %]
```

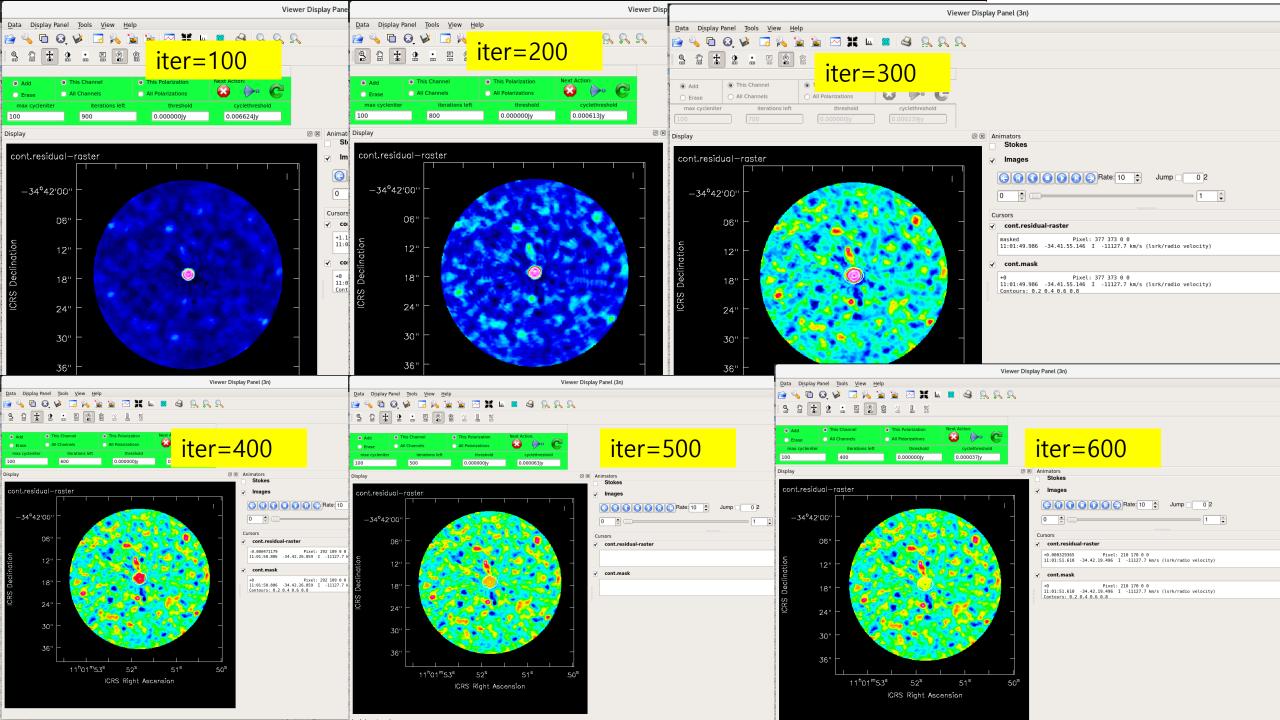


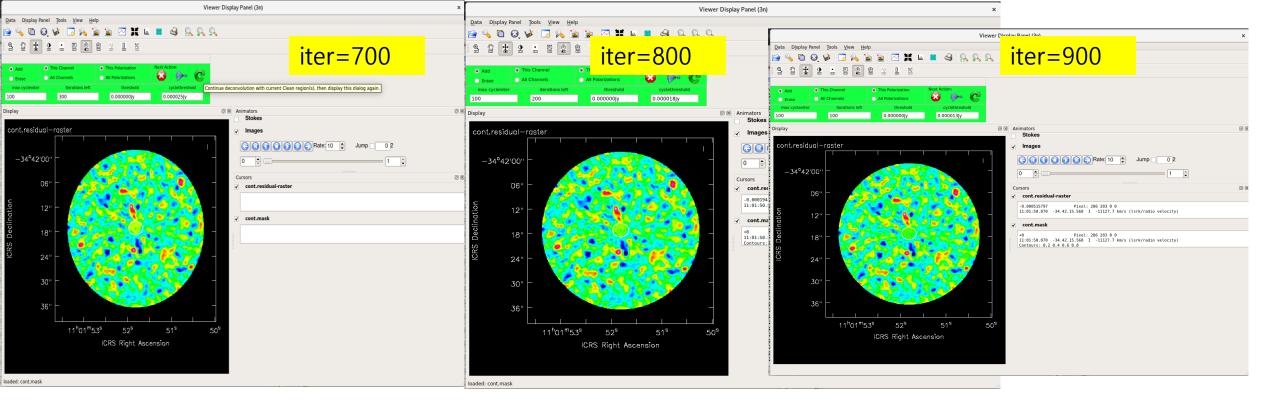
```
Absolute Peak residual within mask: 0.123077, over full image: 0.123077

[cont] Initializing new mask to 0.0 for interactive drawing

[cont] Number of pixels in the clean mask: 0 out of a total of 142884 pixels. [ 0 % ]

[cont.mask] Mask modified from 0 pixels to 267 pixels


[cont] Mask changed interactively.


Absolute Peak residual within mask: 0.123077, over full image: 0.123077

Minor Cycle controls: {'cycleniter': 100, 'cyclethreshold': 0.006623855326324701, 'loopgain': 0.10000000149011612, 'nsigma': 0 itsNsigma=0

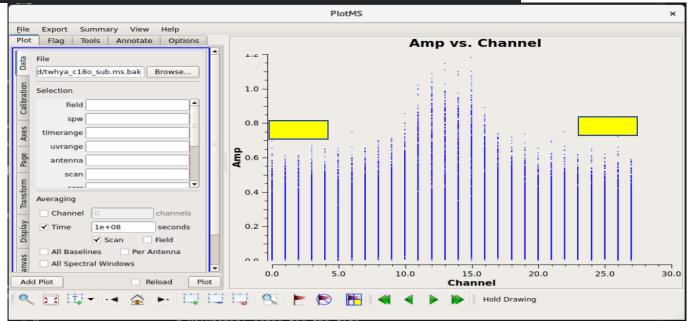
[cont] Run Hogbom minor-cycle | CycleThreshold=0.00662386 CycleNiter=100, Gain=0.1

[cont] iters=0->100 [100], model=0->0.306273, peakres=0.123077->0.0113892, Completed 100 iterations.
```


When you make 'mask' where you trust there are 'Real' signal, then rms = 0 is OK. However, other case, do not clean down to 3 sigma rms level.

Products of 'tclean'

try.psf	Point Spread Function
try.pb	Primary Beam
try.residual	Residual Image (or initial Dirty Image)
try.model	Model Image after deconvolution
try.image	Restored output image
try.image.pbcor	Primary Beam corrected image
try.mask	Deconvolution mask


try.psr.tt0, try.psr.tt1, try.psr.tt2, try.model.tt0, try.model.tt1, try.residual.tt0, try.residual.tt1, try.image.tt0, try.image.tt1, etc	Multi-term images representing Taylor coefficients (of polynomials that model the sky spectrum)			
try.alpha	Spectral index, for multi-term wideband imagging			
try.alpha.error	Estimate of error on spectral index			
try.beta	Spectral curvature for multi-term wideband images (if nterms > 2)			

tclean for line cube image

```
vis c18o='twhya c18o sub.ms'
plotms(vis=vis c18o,xaxis='channel',yaxis='amplitude',avgtime='1e8',avgscan=True, avgchanne
l='1')
fitspw = '0:0~4;23~27' # *line-free* channels for fitting continuum
linespw = '0' # line spectral windows. You can subtract the continuum from multiple spectra
l line windows at once.
linevis='twhya c18o sub line.ms'
uvcontsub(vis=vis c18o,
          spw=linespw, # spw to do continuum subtraction on
          fitspw=fitspw, # regions without lines.
          excludechans=False, # fit the regions in fitspw
          solint='int',
          fitorder=0,
          want cont=False) # This value should not be changed.
                                                                            PlotMS
```

Input parameters are changed in the recent CASA.

```
uvcontsub(vis=vis_c180,
outputvis=linevis,
fitspec =fitspw,
fitorder=0)
```



```
gridder='standard' # uncomment if single field
cell='0.12arcsec' # cell size for imaging.
#imsize = [378,378] # size of image in pixels.
imsize = [384,384] # size of image in pixels.
outframe='lsrk' # velocity reference frame.
veltype='radio' # velocity type.
spw = '0'
field='2'
weighting = 'briggs'
robust=0.5
niter=1000
threshold = '0.0mJy'
start='0' # start velocity. See science goals for appropriate value.
width='1' # velocity width. See science goals.
nchan = 27 # number of channels. See science goals for appropriate value.
restfreq='219.5603541GHz' # Typically the rest frequency of the line: C180
```

linevis='twhya c18o sub line.ms'

lineimagename = 'c18o.ch'

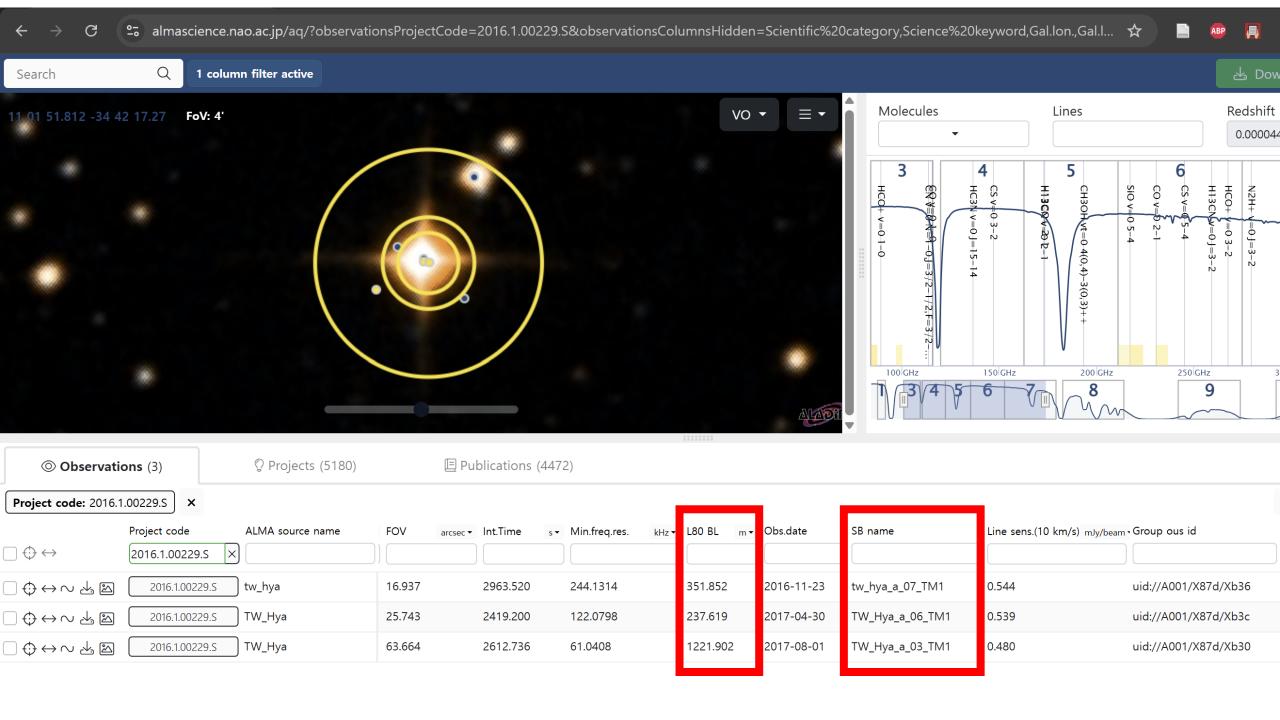
Tasks in execution order						Dirty DR: 79	Right Ascension (artise)
1. hifa_importdata						DR correction: 2	View other QA images
2. hifa_flagdata					non-pbcor image rms	0.0033 Jy/beam	
3. hifa_fluxcalflag							
4. hif_rawflagchans					pbcor image max / min	0.263 / -0.0530 Jy/beam	
5. hif_refant					channels	1918 x -0.0611MHz (LSRK)	
6. hifa_tsyscal							
7. hifa_tsysflag	0				score	1.00	
8. hifa_antpos	Θ				image file	uidA001_X87d_Xb3d.s32_0.TW_Hya_sci.spw25.cube.l.ite	ter1 image
9. hifa_wvrgcalflag					image me	uunov1_no/u_noud.soz_v.111_11/u_so.sprites.soss	er i illinage
10. hif_lowgainflag		TW_Hya (TARGET)	27	I	center frequency of cube	219.5575GHz (LSRK)	Specimage display poss the ori. (month) field (R_Typ spec)? for \$1
11. hif_gainflag					beam	0.78 x 0.62 arcsec	
12. hif_setjy							<u> </u>
13. hifa_bandpass					beam p.a.	83.1deg	
14. hifa_spwphaseup					final theoretical sensitivity	0.0025 Jy/beam	3
15. hifa_gfluxscale					cleaning threshold	0.015 Jy/beam	Minora paties Nethora (III 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
16. hifa_timegaincal					ordaning an education	Dirty DR: 38	Right Accessor (arcsec)
17. hif_applycal						DR correction: 1.5	View other QA images
18. hif_makeimlist					non-pbcor image rms	0.0027 Jy/beam	
19. hif_makeimages				L	non-pacer mage me		
20. hif_checkproductsize					pbcor image max / min	0.105 / -0.0434 Jy/beam	
21. hif_exportdata					channels	1918 x -0.0611MHz (LSRK)	
22. hif_mstransform							
23. hifa_flagtargets					score	1.00	
24. hif_makeimlist						TARK WATER VERSION OF THE Little and annual Touchall it	
25. hif_findcont					image file	uidA001_X87d_Xb3d.s32_0.TW_Hya_sci.spw27.cube.l.ite	er1.image
26. hif_uvcontfit		TW_Hya (TARGET)	29	1	center frequency of cube	231.2177GHz (LSRK)	Topic image display point free et. (more) facts (M_F/sp. spec 29 der 3.)
27. hif_uvcontsub					beam	0.74 x 0.59 arcsec	
28. hif_makeimages							
29. hif_makeimlist					beam p.a.	82.3deg	
30. hif_makeimages					final theoretical sensitivity	0.0037 Jy/beam	*
31. hif_makeimlist					-tt sharehold	COLF Wheel	Montes prints Not beautiful to the control of the c
32. hif_makeimages					cleaning threshold	0.015 Jy/beam Dirty DR: 7.6	Right Accessor (srcsec)

```
tclean(vis=linevis,
       imagename=lineimagename,
           field=field,
           spw=spw,
      # phasecenter=phasecenter,
      # mosweight = True, # unco
       specmode='cube', # comment
       # specmode='cubesource', #
       perchanweightdensity=True,
       start=start,
      width=width,
       nchan=nchan,
       outframe=outframe,
       veltype=veltype,
       restfreq=restfreq,
       niter=niter,
       threshold=threshold,
       interactive=True,
       cell=cell,
       imsize=imsize,
       weighting=weighting,
       robust=robust,
       gridder=gridder,
       pbcor=False,
       restoringbeam='common',
       usepointing=False)
```

specmode = 'cube' ← 'mfs' for continuum

restfreq = frequency of the targeted line

Niter should be increased by niter (for continuum) x nchan


Mask

 You set mask for every channels or the same mask for all channels.

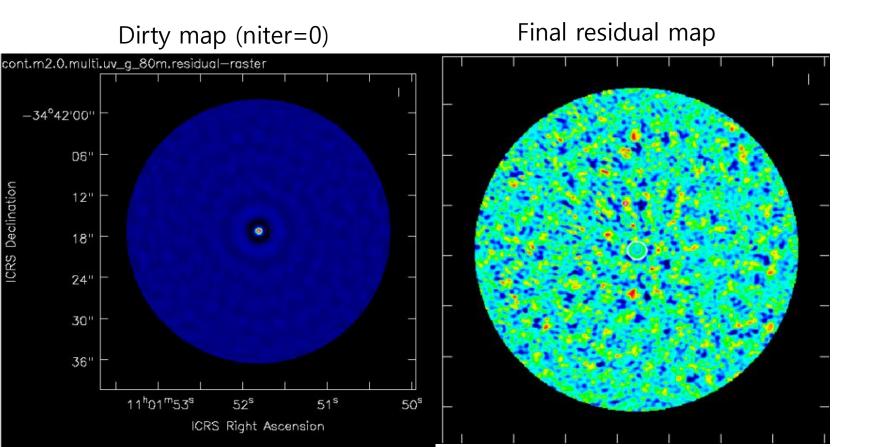
- Automasking
 - usemask='auto-multithresh'
 - Threshold= '## mJy' # 3 * rms level

Automasking

Parameter	7m (continnum/line)	12m (b75 < 300m)	12m (300m < b75 < 400m)	12m (b75 > 400m)	12m + 7m combined TENTATIVE
noisethreshold	5.0	4.25	5.0	5.0	4.25
sidelobethreshold	1.25	2.0	2.0	2.5	2.0
lownoisethreshold	2.0	1.5	1.5	1.5	1.5
minbeamfrac	0.1	0.3	0.3	0.3	0.3
negativethreshold	0.0	0.0 (continuum) 15.0 (line)	0.0 (continuum) 7.0 (line)	0.0 (continuum) 7.0 (line)	0.0
fastnoise	False	False	False	True	False

Tips.

- Save the niter and threshold to run the script automatically.
- Rename the 'imge.mask' to 'image_mask.mask'
- When you run the automatic script, add/change the script mask = 'image_mask.mask'
 Interactive = False


```
When you rerun the 'tclean', add following paramters, calcpsf=False calcres=False
Because we already have '##.psf' and '##.residual' and we do not need to make these again.
```

```
For parallel tclean (for line data)

In the script for tclean, parallel = True

/###/bin/mpicasa -n 10 /###/bin/casa -c ***.py
```

Exam: Uniform (uvrange > 80m)

Gap and rings in Dirty map is due to sidelobe of PSF. Thus, after several iteration of clean process, the feature disappear and become noise-like.