
From scheduling and Phase 2 generation viewpoints

Yu-Ting Wu (EA ARC) and Phase 2 Generation Group in EA

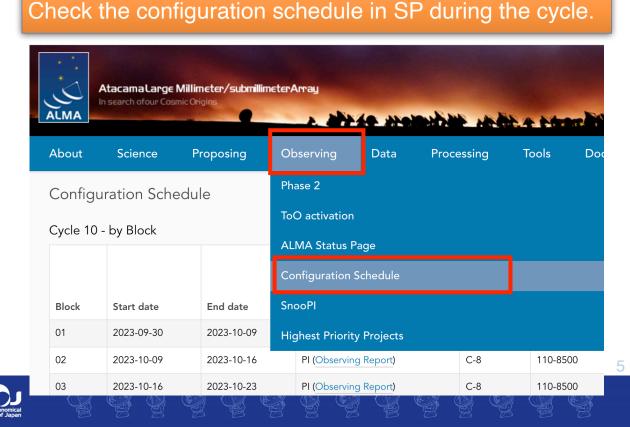
• Once a project has been approved for scheduling, it passes to Phase 2.

- Each approved project will be assigned an ALMA Contact Scientist (CS).
- A project Helpdesk (HD) ticket will be opened on behalf of the PI for communication with the CS and others.
- ALMA staff will generate the Scheduling Blocks and, in case of problems, will contact the CS and the PI. If no problems are found, the project will be submitted to the ALMA observing queue to await execution at the telescope.

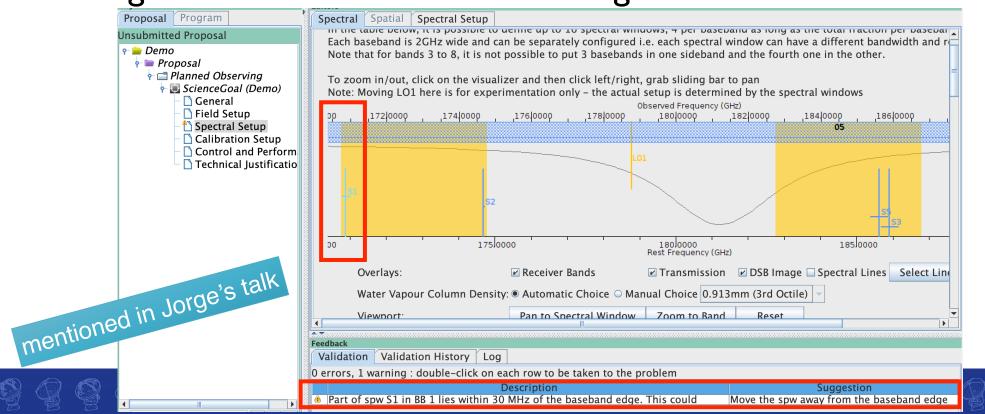
Why we care about scheduling and Phase 2 generation?

- Various aspects of a proposed observation such as weather conditions, requested angular resolution and Largest Angular Structure (LAS) are important when an observation is scheduled.
- Let's plan observations to maximize project completion to achieve our scientific goals!

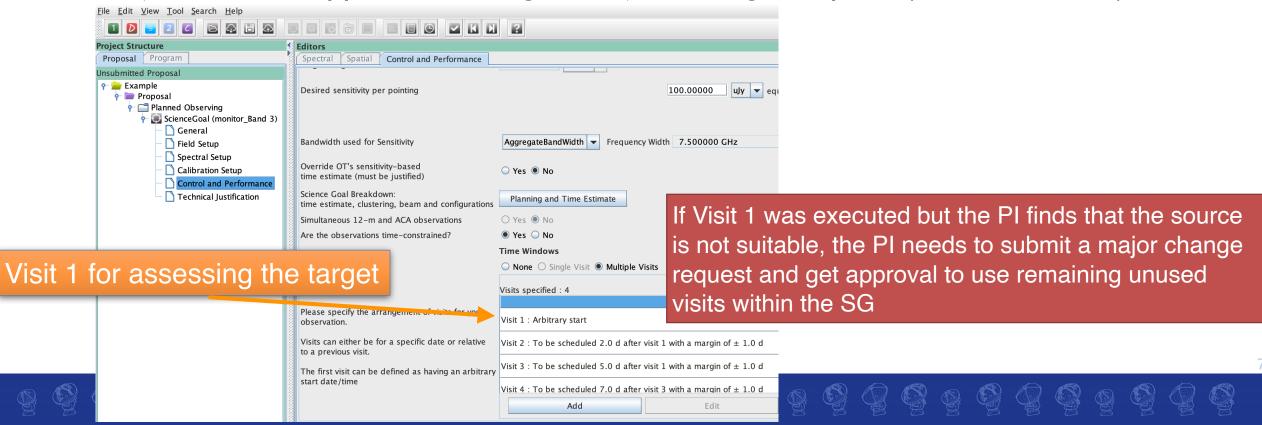
- Observations are scheduled based on the angular resolution
- Whenever a range of angular resolution is acceptable for the science goals, PIs are encouraged to enter a range covering more than one configuration.


🕂 💽 ScienceGoal (example)	Number of Antennas	12111 43	/111 10	ır ว			Planning ar	id Time Estimate		
General	Longest baseline Synthesized I this ONLY wh	ACA 7m configuration	Most compact 12m o	onfiguration Most extended 12			ne in brackets is that requ requirements often mean pecially for mosaics. Pleas	that the actual observe	d time	
— 🗋 Spectral Setup	Longest baseline	0.049 km	0.100	an he achie	vea	details.				
- 🗋 Calibration Setup	Synthesized		nce doals	call be derive		Input Param				
Control and Perfo	$\sim \sim 0$ NII V wh	en vour sur	51100 90			Requested so Bandwidth us	ensitivity and for sensitivity		0.5000 mJy 10.000 km/s	
Technical Justificat	this ONLI WI		0.015 km	0.256 km		Representati	ve frequency (sky, first so	urce)	114.950 GHz	
Ge	Maximum recoverable scale	58.686 arcsec	25.616 arcsec	0.441 arcsec		Estimated	Total time for Scien	ce Goal	1.30 d	
	Desired Performance					Cluster 1				
						Source Name	RA	Dec	Velocity	
	Desired Angular Resolution	(Synthesized Beam) O Sin	gle 🖲 Range 🔾 Any 🔾 Sta	ndalone ACA	P	NGC1291	03:17:18.6000	-41:06:29.048	837.100 km/s	
		1.000	000 arcsec 🔻 to 🗄	5.00000 arcsec 🗸						
						Possible Configuration Combinations				
	Largest Angular Structure in	source 75.00	000 arcsec 🔻			12-m (1) 12-m (2) 7-m TP	Nominal Beam	(") Max expected axial ratio	
	Desired sensitivity per point	ing 0.5	0000 mJy 🔻 equiva	alent to 1.8507 mK @ 5.	.00 "	C-1 None C-2 None C-3 None	Yes Yes Yes Yes Yes Yes	2.867 x 3.166 1.948 x 2.152 1.17 x 1.357	1.5 1.5 1.5	
	and 0.046267 K @ 1.00 "									
	Bandwidth used for Sensitivi	ty User		▼ Frequency Width 10.0000	0 km	Input Parameters Precipitable water		5.186mm (7th Octile)		
	Override OT's sensitivity-ba time estimate (must be justi		5 🖲 No				er pointing (first source) pointings (all sources)	2.82 h [2.79 h] 1		
	Science Goal Breakdown: time estimate, clustering, be	am and configurations	nning and Time Estimate			Total time on sou Total calibration t	rce ime	2.82 h [2.79 h] 1.24 h		
	Simultaneous 12-m and AC	A observations 🛛 🔾 Yes	s 🖲 No			Other overheads Total time for 1 S		15.07 min 1.08 h		
	Are the observations time_c	onstrained? O Ver				Number of SR eve	cutions	Δ		
								Close		

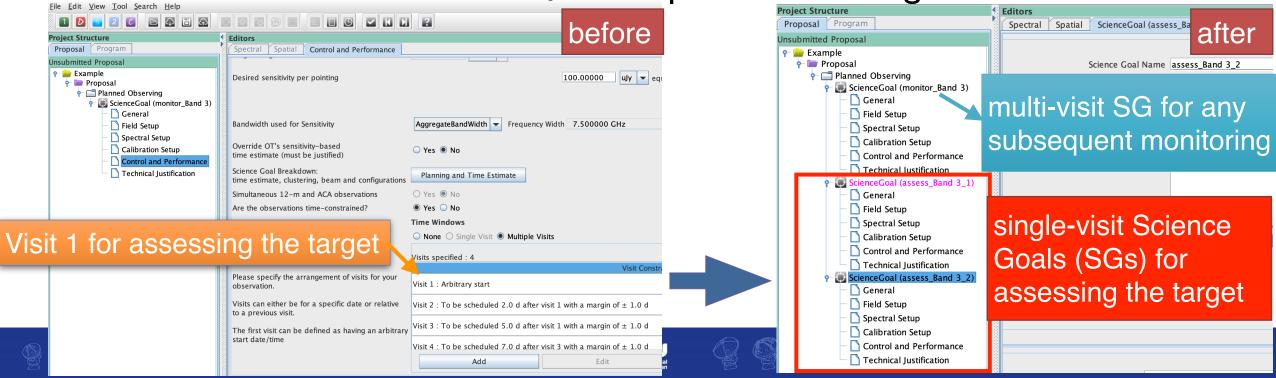
- Section 4.3 of the ALMA Cycle 11 Proposer's Guide
 - observations in Bands 7 through 10 outside of the LST ranges given in the fourth column is limited.


Start date	Configuration	Longest baselir	e	LST for best observing con- ditions
2024 October 1	C-3	0.50 km		~ 2210 h
2024 October 20	C-2	0.31 km		$\sim 23 {} 11$ h
2024 November 10	C-1	0.16 km		~ 113 h
2024 November 30	C-2	0.31 km		~ 2 —14 h
2024 December 20	C-3	0.50 km		$\sim4{-}15$ h
2025 January 10	C-4	0.78 km		$\sim5{-}17~{\rm h}$
2025 February 1	$No \ observations$	due to maintenance		
2025 March 1 C-4 0.78 km			~ 821 h	
2025 March 20	C-5	1.4 km		$\sim9{}23$ h
2025 April 20	C-6	$2.5 \mathrm{~km}$		~ 11—1 h
2025 May 20	C-7	3.6 km		$\sim 13 3$ h
2025 June 20	C-8	$8.5 \mathrm{km}$		$\sim 14 {}5$ h
2025 July 11	C-9	13.9 km		$\sim 16 6$ h
2025 July 30	C-10	$16.2 \mathrm{~km}$		$\sim 17 7$ h
2025 August 20	C-9	13.9 km		~ 19—8 h
2025 September 10	C-8	8.5 km		$\sim 20 {-\!\!-} 9$ h

mentioned in Nagai-san's talk



- Avoid placing spectral windows (spw) close to the baseband edge
- Any spw located within 30 MHz of the baseband edge could result in compromised flux calibration and might cause problems for finding the tuning solution for Local Oscillator signals as well.


4. Target of Opportunity (ToO) proposals with multiple-visit observation

- Section 3.2 of the ALMA Cycle 11 Proposer's Guide
 - Pls should be aware that, once a monitoring SG is triggered on a source, any remaining unused visits within that SG cannot be re-assigned unless fully justified and approved through a Major Change Request (see Section 6.2).

4. Target of Opportunity (ToO) proposals with multiple-visit observation

- Section 3.2 of the ALMA Cycle 11 Proposer's Guide
 - If it is desirable to use a first epoch of observations to assess target properties (e.g., suitability for monitoring), it is recommended that PIs create single-visit Science Goals (SGs) for this purpose, separate from multi-visit SGs for any subsequent monitoring.

5. Checking for duplications

 Duplicate observations of the similar location on the sky with similar observing parameters (frequency, angular resolution, coverage, and sensitivity) are not permitted unless scientifically justified (Section 4.4.1)

	AtacamaLarge N In search ofour Cosm	Millimeter/submillin nic Origins			and the second								
About	Science	Proposing	Observing	Data	Processing	Tools	Documentat	ion	Help				
Duplica	ate Observat	ALMA Cycle 1	1 Call for Proposa	ls									
unless scie check their The <u>ALMA</u> that it lists lists the se be used in The ongoir	o ensure the most e entifically justified. E r proposed observa <u>Archive</u> contains a the metadata for C ensitivity and angula the duplication che ng list of observation dsheet content is de	Proposing Guid Cycle 11 Propo Cycle 11 Capal Observing Too	dance oser's Guide bilities I			roposer's Gi o avoid dupl that have be goals that completed e (CSV) text	uide and Section 6 icate observations een started or com nave not been com in full. Observatio format. It includes	o.3 of the opleted. npleted a ns for Gr one row	quency, angular resolution, coverage, Users' Policies. It is the responsibility The spreadsheet "Projects in the Que as of 2024 March 07 and are still in the ade B and C projects that have not be for each target, rectangular mosaic, long with the resolution and sensitivit	of the Princi ue" supplem e observing c een started b or each point	ipal Investi nents the A queue. The by 2024 Ma ting in cust	igator (PI) t LMA archine spreadshe arch 07 will tom mosaid	to ve in eet I not
	to a user-contribute				joing Grad				oing observations. Instructions on ho	w to run the		provided ir Script	the
		Iechnical Hanc	воок										
		Proposal Temp	late	_									
Site Man	Accessibility	Duplicate Obs	ervations							Region:	FΔ	FU	NA

5. Checking for duplications

Criteria

ALMA Users' Policies

Project Structure

🕈 ┢ Demo

Appendix A Definition of a Duplicate Observation

A proposed observation is considered a duplicate of another observation if all of the following conditions are met:

Target field location

- For single-field interferometry, the proposed position coincides within the half-power beam width of ٠ the other observation. Moving objects (e.g., Solar System objects) will be identified by name.
- For mosaic observations, more than 50% of the proposed pointings are within the half power beam • width area covered by the other observation.

Angular Resolution

• The proposed angular resolution differs by a factor of ≤ 2 from the other observation.

Spectral windows

Continuum: The requested sensitivity (rms) for the aggregate bandwidth is better by a factor of ≤ 2 ٠ from the other observation and the requested frequency is within a factor of 1.3.

- or -

Spectral line: If the central frequency in any requested correlator window observed in Frequency ٠ Division Mode (FDM) mode is encompassed by the other observation observed in FDM mode and the sensitivity per spectral channel, after smoothing to the same spectral resolution, is better by a factor of ≤ 2.

To be considered a "continuum" observation, the proposed correlator setup must contain 2 or more windows with a bandwidth > 1.8 GHz.

File Edit View Tool Search Help H Editors Proposal Program Spectral Spatial Proposal Unsubmitted Proposal Reviewers are requested to: 🛉 🖿 Proposal + Planned Observing • Abide by the maximum number of Proposal Sets that are to be assigned + 💽 ScienceGoal (Demo) Update their user profiles with combinations of scientific categories and General tab in the link below. Available expertise information will be used in t Field Setup Spectral Setup https://asa.alma.cl/UserReg Calibration Setup Control and Performance Reviewer has Technical Justification Science Case Please ensure that your science case is properly anonymized following instructions on the Scie Science Case (Mandatory, PDF, 4 pages max.) Duplicate observations Briefly justify any new observations that duplicate archival Information regarding the ALMA Duplication Policy and ho https://asa.alma.cl/UserReg

10

Solar observations will not be checked for duplications.

6. Resubmission of an unfinished proposal

- Proposal teams that submit a Cycle II proposal to observe some or all the SGs of an unfinished project will have the relevant SGs identified as a "resubmission".
- Criteria: Appendix A of the Users' Policies
- Policies (Section 4.4.2 of the ALMA Cycle 11 Proposer's Guide):
 - For such resubmissions, the relevant portion of the Cycle 11 proposal will be canceled if the observations are successfully completed in Cycle 10.
 - Observations of a SG started in a previous cycle and accepted as a resubmission in Cycle II will continue to be observed with the setup of the previous cycle.

6. Resubmission of an unfinished proposal

• Example:

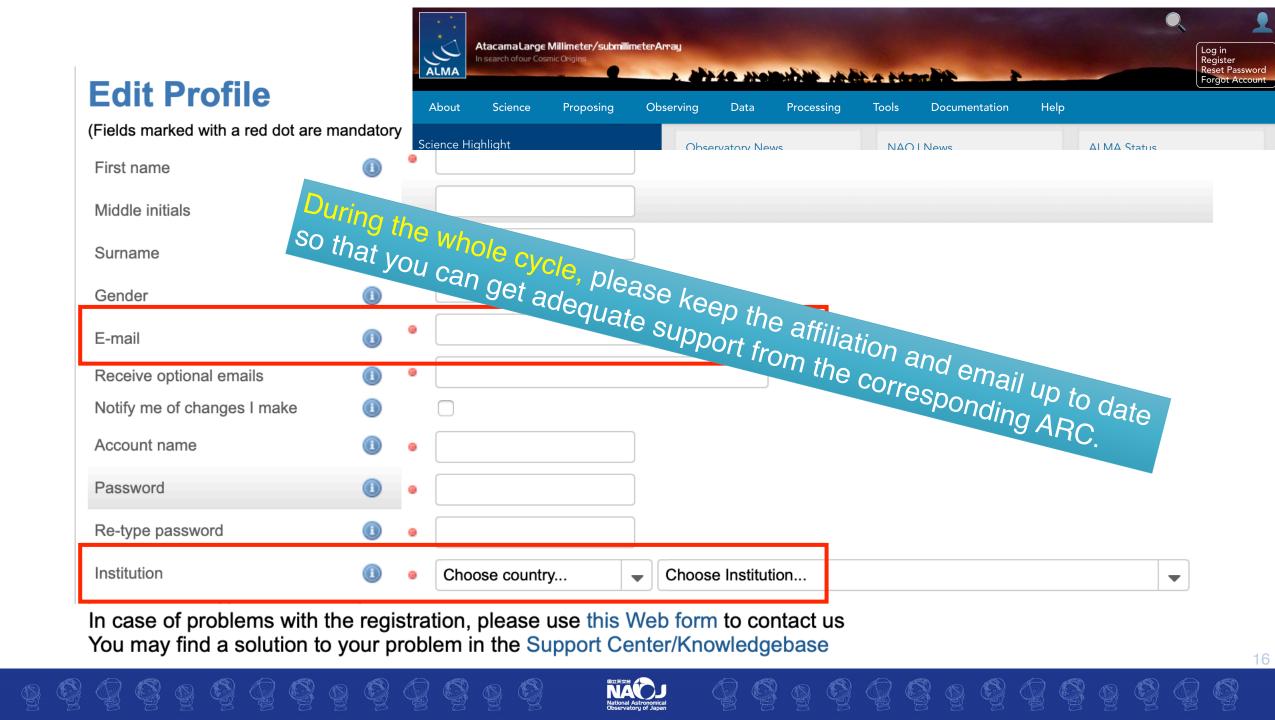
🛯 💼 🖬 🖬 🔽 Cycle 10 Proposal									
Editors									
Spectral Spatial Control and F	The SG	is ex	ecuted	but not o	completed y	et			
Synthesized beamsize	5.737 arcsec		1.528 arcsec		0.045 arcsec	-			
Shortest baseline	0.009 km		0.015 km		0.113 km				
Maximum recoverable scale	29.771 arcsec		13.019 arcsec	:	0.643 arcsec				
Desired Performance									
Desired Angular Resolution (Synthesized Beam) 🛛 Single 🖲 Range 🔾 Any 🔾 Standalone ACA									
		0.01000	arcsec	to 0.10000	arcsec 🗸				
	_			_					
Largest Angular Structure in sour	ce C).3	arcsec 🔻	·					
Desired sensitivity per pointing	Desired sensitivity per pointing 0.05 mJy 🗸 equivalent to 115.02 mK @ 0.100 "								
			Distriction		000- 05 K @ 0.010				
			Planning an	d Time Estimate					
Bandwidth used for Sensitivity				ired to reach the so hat the actual obse		z			
Override OT's sensitivity-based time estimate (must be justified)									
Science Goal Breakdown:	Input Par								
time estimate, clustering, beam a		d sensitivity			0.05000 m 1875.000	nJy			
Simultaneous 12-m and ACA observed Bandwidth used for sensitivity MHz									
Are the observations time-constr	e the observations time-constr <mark>eases Representative frequency (sky, first source)</mark> 230.541 GHz								
	Estimated Total time for Science Goal 1.01 h								
	Cluster 1								
	Source Name		RA	Dec	Velocity				
	test	13:00	0:00.0000	00:00:00.000	0.000 km/s				

In Cycle11, the observation will continue in Cycle 10 proposal, meaning achieving the sensitivity of 0.05 mJy.

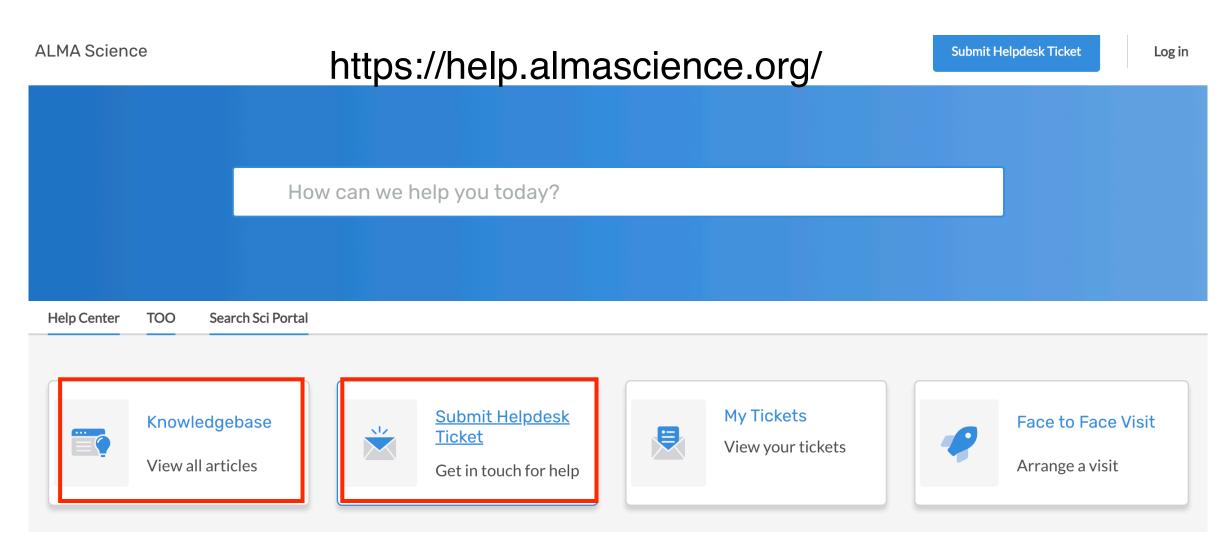
Largest Angular Structure in sourc	0.3	arcsec	•					
Desired sensitivity per pointing	0.025	mJy	 equivalent to 57. 	512 mK @ 0.1	00 "			
	Planning and Time Estimate							
Bandwidth used for Sensitivity	ensitivity Note: The time in brackets is that required to reach the sensitivity. Operational requirements often mean that the actual observed time is longer, especially for mosaics. Please see the User Manual for more							
Override OT's sensitivity-based time estimate (must be justified)								
Science Goal Breakdown: time estimate, clustering, beam :	Requested sensitivity 0.02500 mJ Bandwidth used for sensitivity 1875.000 MHz							
Simultaneous 12-m and ACA ob	Representative frequence	frequency (sky, first source) 230.541 GHz						
Are the observations time-constructions time and the second state of the second state								
eedback	Cluster 1				000000			
Validation Validation History	Source Name	RA	Dec	Velocity				
	test 13:00:0	0.0000	00:00:00.000	0.000 km/s	on			

7. Change requests (Section 8 of the ALMA Users' Policies)

- Triple-check all setups before the proposal submission deadline!!
- After the PIs have been notified of the results of the proposal review process, PIs of scheduled proposals may request necessary changes to their project via the ALMA Helpdesk.
- Major changes (defined in Appendix B of the ALMA Users' Policies) are allowed only if the change is essential for the science goals of the project. Any major change request by a PI must be made by submitting a Helpdesk ticket and will only be implemented after the approval of the change request.



7. Change requests (Section 8 of the ALMA Users' Policies)


- Major change requests may be motivated by the following considerations
 - New information received since the original proposal submission
 - e.g. new observations including interim observational results of a project, other new information on planned observing targets, or externally-imposed changes to the scheduling of time-coordinated observations at other observatories
 - Technical considerations for implementation during Phase 2 (that are initiated by the PI, e.g. to optimize the scientific yield of the observations)
 - Mistakes made by the PI
- Please read Section 8 and Appendix B of the ALMA Users' Policies carefully before requesting any changes!

Observations that are particularly encouraged in Cycle 11

- ACA, especially in the Local Sidereal Time (LST) range of 20h to 10h
- High frequency (Bands 8, 9, and 10) in any configuration
- Low frequency (Bands I, 3, and 4) at long baselines (C-7, C-8, C-9, and C-10)

Please don't hesitate to contact us through the Helpdesk!

