

New Functions in ALMA Science Archive (ASA)

Line Search and Similar Image

Pei-Ying Hsieh (NAOJ, ASA EA cognizant lead)

2025 Major Updates

CARTA 5

- Viewing channel map is available before downloading the cubes.

Fastatronomy

- Spectral Line Identification.
- Similar Images.

Fastastronomy

find me all the CO2-1 line data with 0.5 km/s velocity resolution of M51 in the ALMA archive

okay, here is the table of the data and the scripts you request, do you want to export them to csv file?

Like Dislike Share Refresh Edit in a page

find me all the stellar sources exhibiting outflow structures

Smart

Spectral Line Database in ASA – Current and Future

- To help users quickly explore and mine the science content of ALMA data cubes, now we offer,
 - detecting spectral lines
 - computing moment maps
- **ADMIT (ALMA Data Mining Toolkit)** is a Python-based software. It was developed by The ADMIT Team at UMD in 2016.
- Most the ALMA archive data have ADMIT products.

https://casaguides.nrao.edu/index.php/ADMIT_Products_and_Usage_CASA_6

<https://admit.astro.umd.edu/examplescripts.html#example-1-ingest-through-lineid-and-moment>

<https://help.almascience.org/kb/articles/where-can-i-get-additional-information-for-my-na-added-value-data-products>

ADMIT Pipeline of Line Identification (brief version)

[CubeSum] Sum all cube along all channels of the frequency axis to make a 2-D map.

[SFind2D] Creates a list of sources found in a 2-D image brighter than 5 sigma.

[CubeSpectrum] Extract a spectrum through the cube **at a specified point (?)**.

[LineID] Identify any spectral lines present in the data.

[LineCube] Create a cutout cube for each spectral lines identified.

[Moment] Compute moment 0,1,2 maps, and spectra for each cutout cube

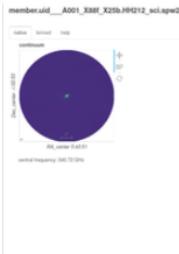
SFind2D (peaks > 5 sigma at the sum image)

Table of source locations and sizes (not deconvolved)

ASA: Extract the spectrum of the first source, and do line ID. The source table is available in the ADMIT product.

Name	RA	DEC	Flux	Peak	Major	Minor	PA
¶	¶	¶	[Jy]	[Jy/beam]	[arcsec]	[arcsec]	[deg]
1.000E+00	17:46:46.380	-28.32.09.94	1.409E+00	2.856E-01	2.636E+00	1.544E+00	1.349E+02
2.000E+00	17:46:46.396	-28.32.10.24	2.613E+00	2.651E-01	4.540E+00	1.805E+00	1.633E+02
3.000E+00	17:46:46.379	-28.32.09.86	3.375E+00	2.779E-01	5.847E+00	1.763E+00	1.538E+02
4.000E+00	17:46:47.058	-28.32.07.16	2.326E-01	2.511E-01	9.480E-01	7.653E-01	1.249E+02
5.000E+00	17:46:46.373	-28.32.09.33	5.231E+00	2.325E-01	8.747E+00	1.813E+00	1.629E+02
6.000E+00	17:46:46.696	-28.31.56.11	6.481E-01	2.213E-01	1.811E+00	1.457E+00	2.297E+01
7.000E+00	17:46:47.180	-28.32.14.31	7.134E-01	2.183E-01	1.982E+00	1.467E+00	3.658E+01
8.000E+00	17:46:46.312	-28.32.09.34	1.252E-01	2.159E-01	7.000E-01	7.000E-01	5.659E-04

Example: Download Admit Product in ASA


Download 508 MB Open legacy Request Handler

Project (1) Select all Readme Product tar Auxiliary tar Raw tgz Raw (semipass) tgz External tar

Group ObsUniSet (1) member.uid_A001_X88f_X25b.HH212_sci.spw43.mfs.l.pbcor.admit.xml (auxiliary, ad)

Member ObsUniSet (1) member.uid_A001_X88f_X25b.HH212_sci.spw33.mfs.l.pb.fits.gz (prod)

Member ObsUniSet (1) member.uid_A001_X88f_X25b.HH212_sci.spw25_27_29_31_33_35_37_39_41_43_45_47_49.cont... (prod)

Source (1)

Collection (1)

Array (1)

File type (6)

File class (3) member.uid_A001_X88f_X25b.HH212_sci.spw39(cube.l.pb.fits.gz) (prod)

Band: 7
Frequency range: 346.522..346.581
Frequency resolution: 122.07 kHz
Line sens. (10km/s): 0.543 mJy/beam
Line sens. (native): 0.241 uJy/beam
Polarisations: XX YY
Array: 12m

member.uid_A001_X88f_X25b.HH212_sci.spw33(cube.l.pbcor.admit.native.tgz)

Download and untar
.admit..tgz

Use the ADMIT Weblog to View the Results

Open “[index.html](#)” with chrome, firefox etc., and review each steps.

ADMIT Output for member.uid__A001_X88f_X25b.HH212_sci.spw25(cube.l.pbcor.admit.native

Flow View Form View LineID Editor ADMIT Log [ADMIT documentation](#)

TASKS LISTED IN ID NUMBER ORDER - CLICK ON TASK NAME TO SEE ITS OUTPUTS. COLORS AND ICONS INDICATE THE STATUS OF EACH TASK:
✓ TASK RAN NORMALLY (GREEN) | △ TASK NEEDS TO BE RE-RUN (ORANGE) | ⚡ TASK IS DISABLED (PINK) | 💣 TASK HAS CRASHED (RED)

Flow Diagram for member.uid__A001_X88f_X25b.HH212_sci.spw25(cube.l.pbcor.admit.native

Ingest_AT (taskid=0) file=member.uid__A001_X88f_X25b.HH212_sci.spw25(cube.l.pbcor.fits

CubeStats_AT (taskid=1) robust=medabsdevmed ppp=True

CubeSum_AT (taskid=2) numsigma=4.0 sigma=0.00354684 smooth=[]

SFind2D_AT (taskid=3) nsigma= 5.0 sigma=0.0799513 region= robust=['hin', 1.5] snmax= 35.0 nmax=30

CubeSpectrum_AT (taskid=4) pos=[(251, 215), (233, 259), ('05h43m51.438s', '-01d02m51.97s')] x.im

LineSegment_AT (taskid=5) numsigma=5.0 minchan=4 maxgap=3 csub=[0, 0] iterate=True

PVSlice_AT (taskid=6) slice=['341.69', '6.00', '141.07', '473.00'] width=5

PVCorr_AT (taskid=7) numsigma=3.0 range=[19,92]

LineID_AT (taskid=8) vlsr=1e-05 numsigma=5.0 minchan=4 maxgap=3 csub=[0, 0] iterate=True tier1width=0.0 identifylines=True recomb=shallow

LineCube_AT (taskid=9) pad=5 fpad=-1 equalize=False

Moment_AT (taskid=10) moments=[0, 1, 2] numsigma=[2.0] mom0clip=2 chans=all x.SiO_347.33058

CubeSpectrum_AT (taskid=11) pos=[(233, 259)] x.SiO_347.33058

Moment_AT (taskid=12) moments=[0] numsigma=[3.0] mom0clip=2 chans=all x-@1.mom

Click each step to review the analysis.

LineID_AT: table of identified lines

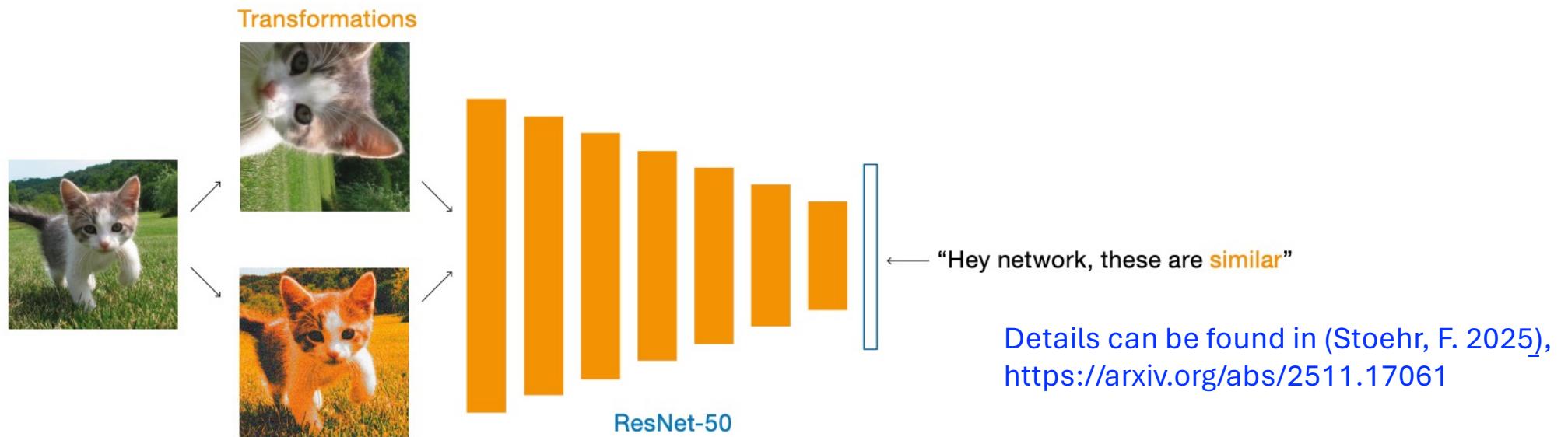
LineID_AT (taskid=8) vlsr=1e-05 numsigma=5.0 minchan=4 maxgap=

Identified Spectral Lines

frequency	uid	formula	name	transition	velocity	EI	Eu
[GHz]					[km/s]	[K]	[K]
3.473E+02	SiO_347.33058	SiO	Silicon Monoxide	8-7	-8.860E+00	5.835E+01	7.502E+

Future in the ASA Search (Some time after 2026)

Lines									
	Publications (4544)		Lines (45060)						
Rest Frequency	ALMA Source Name	Molecule (formula)	Transition	FWHM	Redshift	VLSR (radio)	Rest frequency	Rest Frequency	Rest Frequency
Line	ATLAS_C2024_G3	HC3N	J=25-24	2.4535	0.0000	11.938	227.419	224.293..23	
	ATLAS_C2024_G3	13CS	5-4	2.6737	-0.0000	-0.213	231.221	227.814..23	
Redshift	ATLAS_C2024_G3	SiO	5-4	1.7376	-0.0000	-0.214	217.105	214.891..21	
	ATLAS_C2024_G3	H2CO	3(1,2)-2(1,1)	1.9478	0.0000	11.938	225.698	223.216..22	
VLSR	ATLAS_C2024_G3	CH3CHOvt=1	21(-1,20)-21(1,21)E	10.0000	0.0000	11.938	226.309	213.569..23	
	ATLAS_C2024_G3	CH213CHCN	24(13,11)-23(13,10)	1.2901	0.0000	11.938	227.009	225.365..22	
SNR	ATLAS_C2024_G3	OCSv=0	20-19	2.5891	-0.0000	-0.597	243.218	239.919..24	
	ATLAS_C2024_G3	HC3N	J=24-23	2.5224	-0.0000	-0.214	218.325	215.111..221	
FWHM	ATLAS_C2024_G3	HDO	3(1,2)-2(2,1)	3.7895	0.0000	11.938	225.897	221.069..23	
	ATLAS_C2024_G3	SO	6(5)-5(4)	11.7741	-0.0000	-0.213	219.949	204.949..23	
Peak Flux	ATLAS_C2024_G3	c-HCC13CH	18(11,7)-18(10,8)	1.5856	-0.0000	-0.597	244.254	242.234..24	
	ATLAS_C2024_G3	CS	5-4	2.7791	-0.0000	-0.597	244.936	241.395..24	
	ATLAS_C2024_G3	CO	2-1	11.7741	-0.0000	-0.616	230.538	215.538..24	
	ATLAS_C2024_G3	U_220.2829		10.0000	-0.0000	-0.213	220.283	207.543..23	


What is the Current Source of Redshift Used by ADMIT?

1. We use the redshift given by the PI.
2. If none is given, we go to SIMBAD and NED and find the 'best' matching source.
3. If none is found we try to use the lines that people wanted to observe (if given) and say that this would be 'in the center'.
4. If none is given, we use 0.
 - This sometimes works reasonably well. Sometimes gives wrong results. E.g. if the PI put 0 for a high-z source.
 - **Please note that uncertainties in VLSR may affect the identification, so we recommend reviewing the results carefully, especially for complex spectra.**

ALMA Similar Images – Model Training

ResNet-50 is a deep neural network that turns an image into a numerical summary of its visual structure.

Teach a model (ResNet-50): Unsupervised machine learning trains ResNet-50 using rotated and cropped images, producing the fingerprints (2048-number vector) that describes each image's morphology.

ALMA Similar Images – Model Training

- **Input images** are **64×64 pixel cut-outs**, centered on the **brightest pixel** when the signal-to-noise ratio is greater than 5, and on the **image center** otherwise.
- **Pixel values are normalized.**
- The model is trained on **all continuum preview images (public)** in the ALMA Science Archive.
- A **separate training** is performed on **peak-flux (moment 8) images** from spectral-line cubes.
- During similarity inference, results are **restricted to scientifically meaningful categories**, preventing nonsensical matches (e.g., galactic discs vs. protoplanetary discs).

Details can be found in
<https://arxiv.org/abs/2511.17061>

Step 1: Model Training

- **1.8 hours → Model training**
- **What:** Training the ResNet-50 model using SimCLR
- **Data:** ~100,000 images
- **Epochs:** 100
- **Hardware:** 3 × NVIDIA TITAN RTX GPUs (in ESO)
- **Purpose:**
 - Teach the model how to represent image morphology
 - Learn invariance to rotation, brightness, cropping, etc.
 - This step **is only done once**.

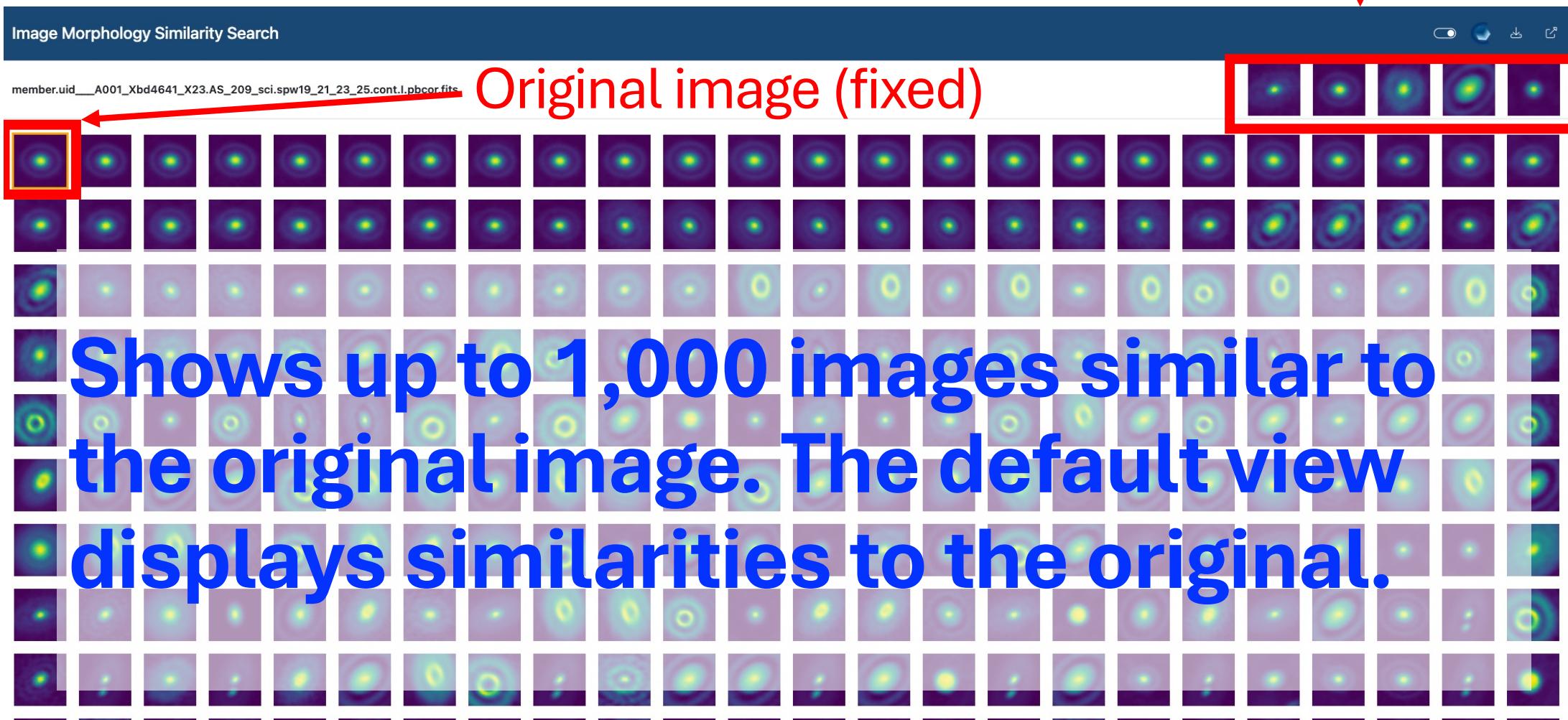
Step 2: Similarity Database for the Archive Images

Using the ResNet-50 Model...

1.7 hours → Similarity computation for the archive

- **What:** Computing similarity relationships **after the model is already trained**
- **Data:** All public archive images converted to vectors
- **Hardware:** **1 × NVIDIA TITAN RTX GPU (in ESO)**
- **Purpose:**
 - Convert images into 1-D vectors
 - Find nearest neighbors to overcome $O(N^2)$ scaling
 - Build the similarity database (1000 images)

It is done **offline** and repeated only when new data are added. Image similarity is measured using a vector distance (cosine distance).

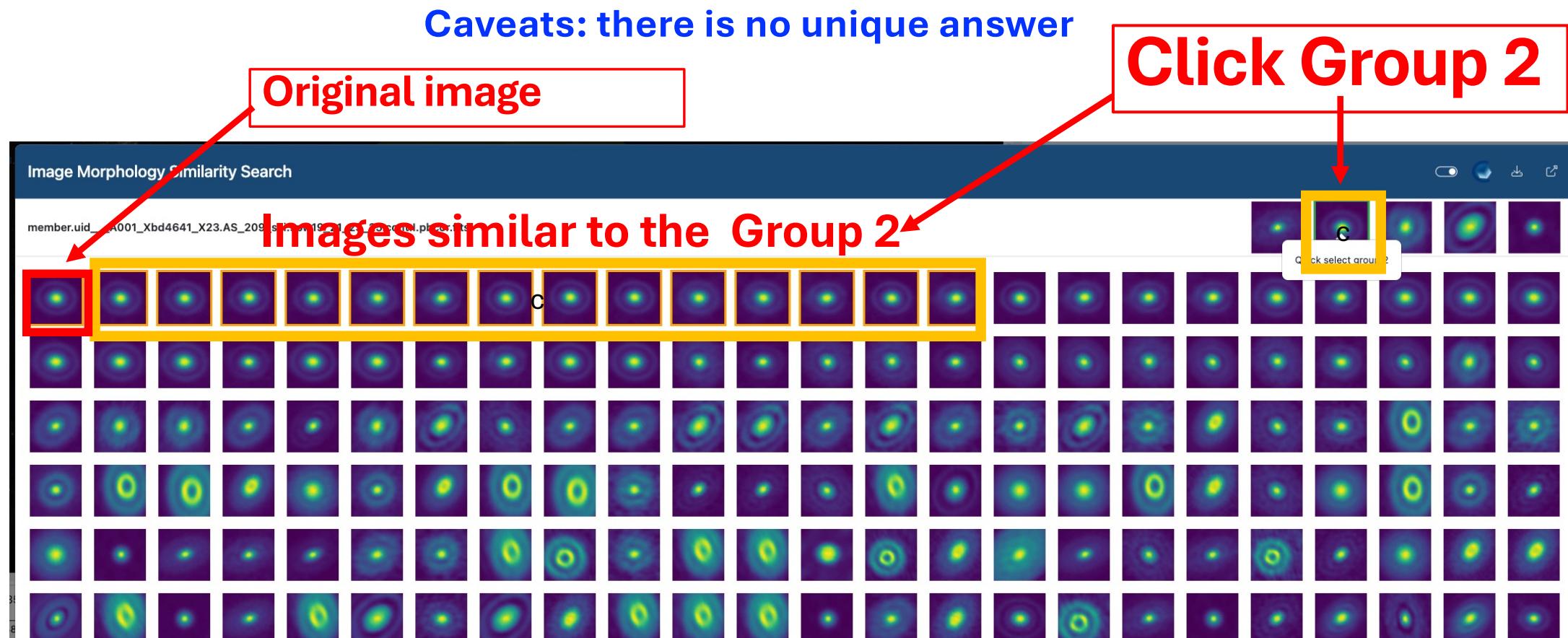

ALMA Similar Images in ASA

- When you find a data in ASA, click the icon within preview
- 1000 similar images will return. In addition, we **group the similar images into 5 major clusters** to show the main types of shapes found.

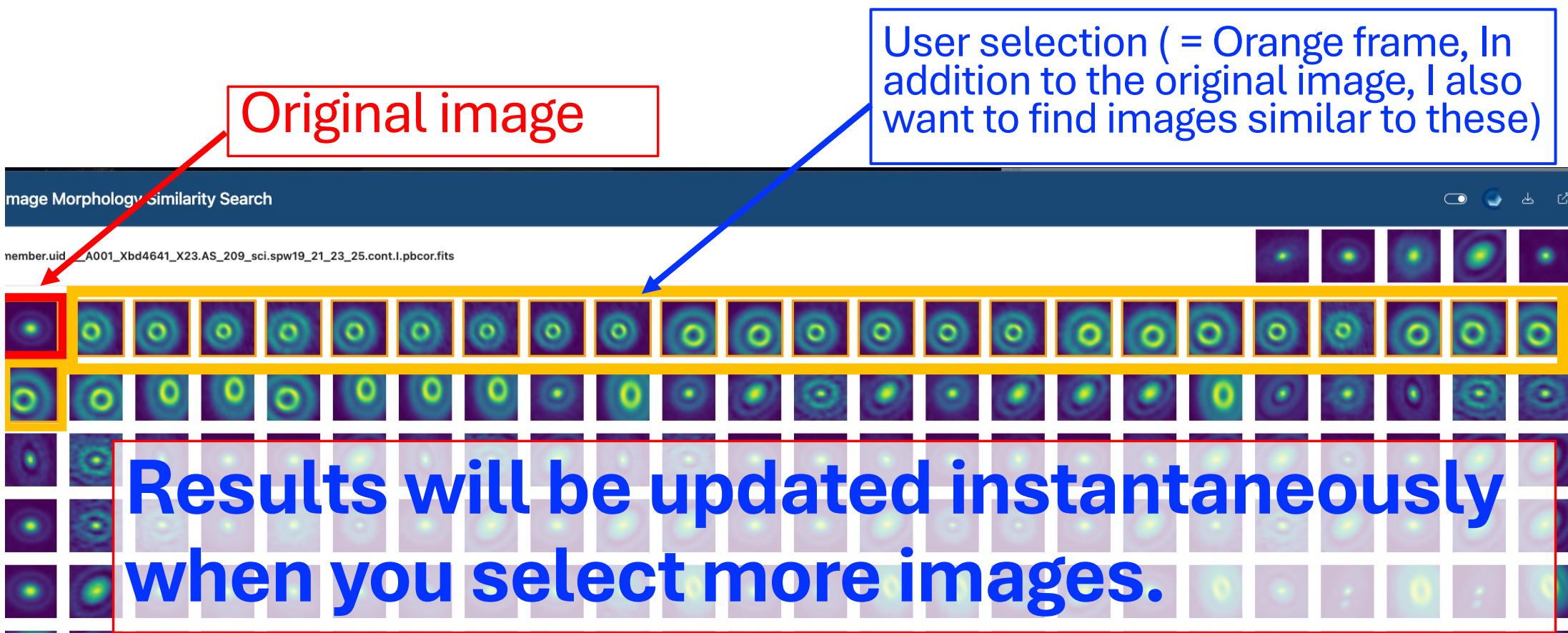
The current similar image function offers Continuum Maps for now.


Interface of Similar Images in ASA

5 Main Groups


Five Similar Groups by the Model (quick select)

- It groups the similar images into five morphology.
- These five clusters are based on the selected image's morphology vector.


Example 1: Select One Group

- When you select Group 2, the original image and the 14 similar images in that group are highlighted with an orange frame.

Example 2: Users Selectable Conditions

- Instead of selecting the groups, you can select the similar images yourself. The results will update based on the new parameters.

