
ASTE Status Report & Future Prospect

Tetsuhiro MINAMIDANI (ASTE Project Manager - based in NAOJ Mitaka since 2023 April)

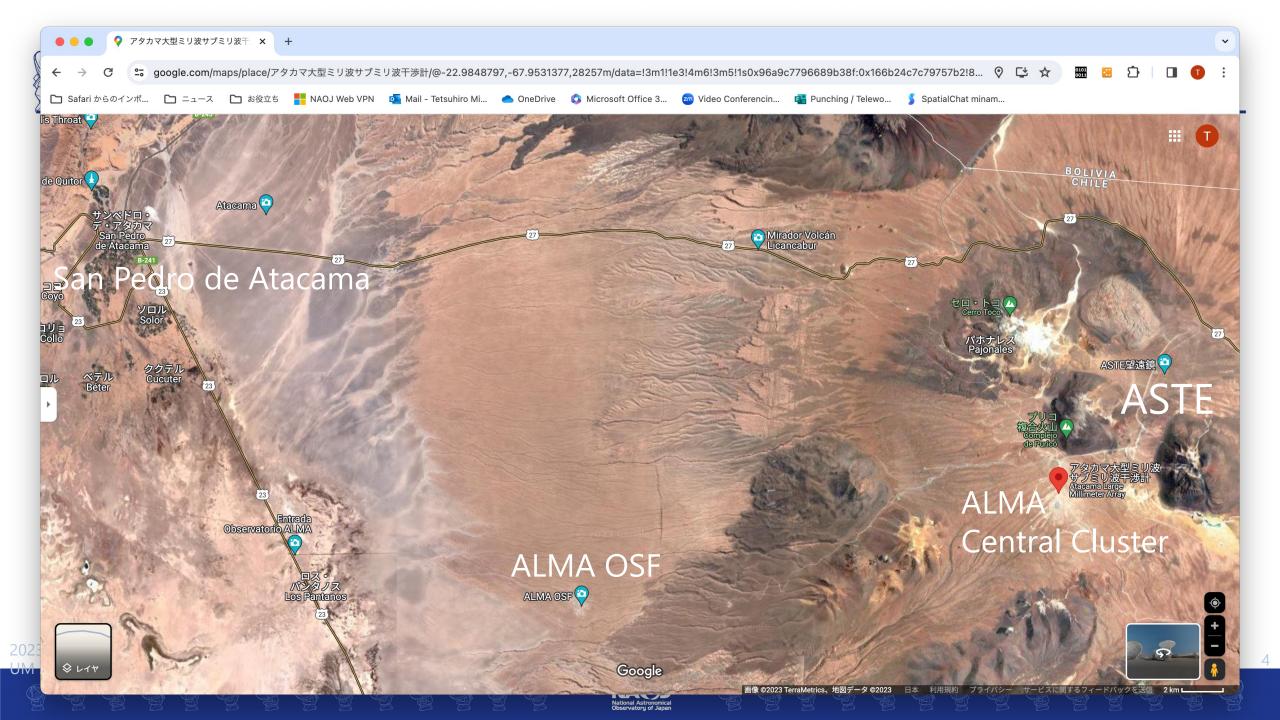
National Astronomical Observatory of Japan, NAOJ Observatorio Astronómico Nacional de Japón

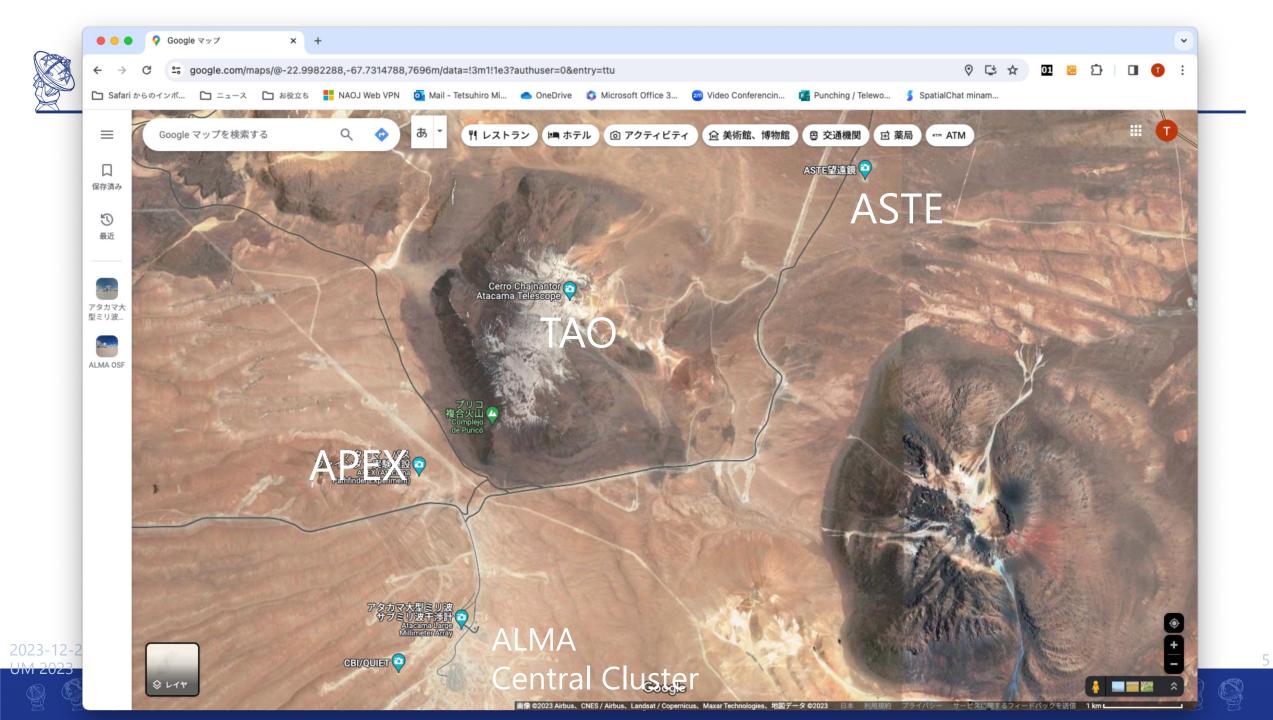
Short Summary of Recent Status ASTE

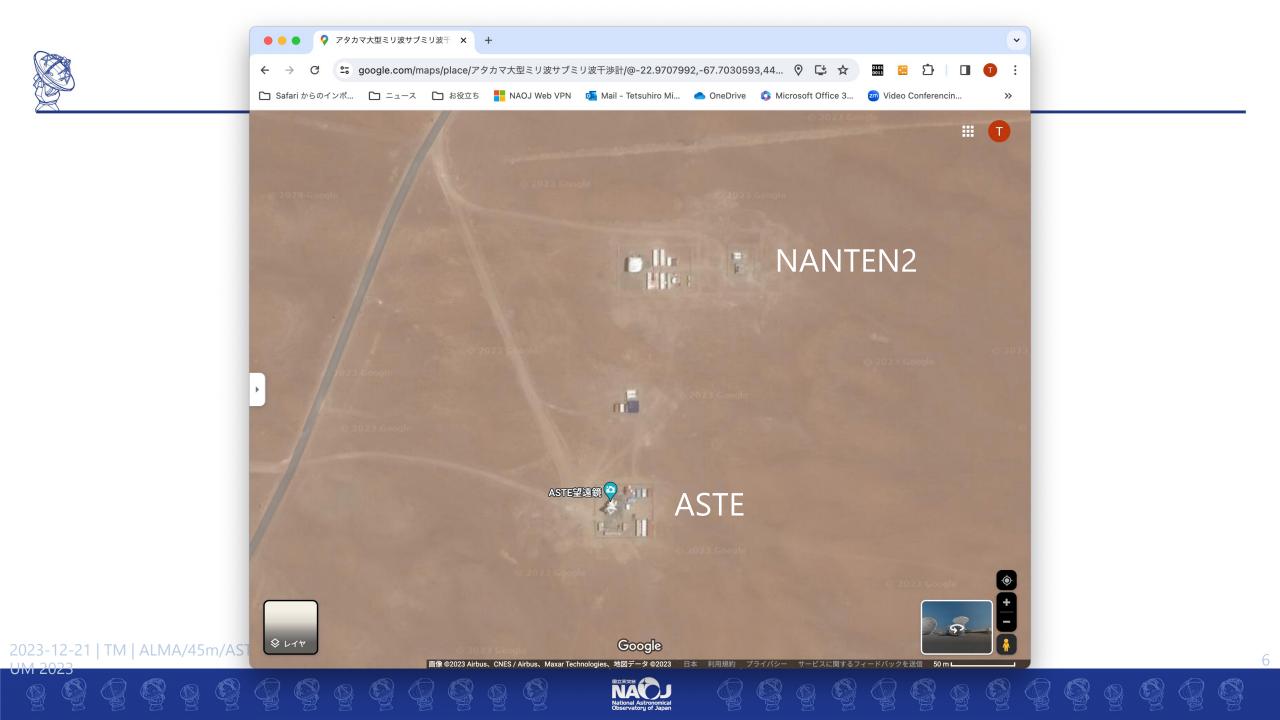
- ASTE has backed to Science Operation!!
 - Start up: 2023 May -
 - Recovery from Sub-Reflector Driving System malfunction
 - Heterodyne session:
 - CSV: June -
 - Science Observations: July Sep.
 - DESHIMA Session:
 - Oct. Dec.
- Suspended due to Sub-Reflector Driving System Malfunction
 - middle of Nov. -

2023-12-21 | TM | ALMA/45m/ASTE

- Recovery activities at the ASTE Site will be resumed from middle of Feb. 2024.
- Plan to resume operation as planned.


<u>Atacama</u> <u>Submillimeter</u> <u>Telescope</u> <u>Experiment</u>

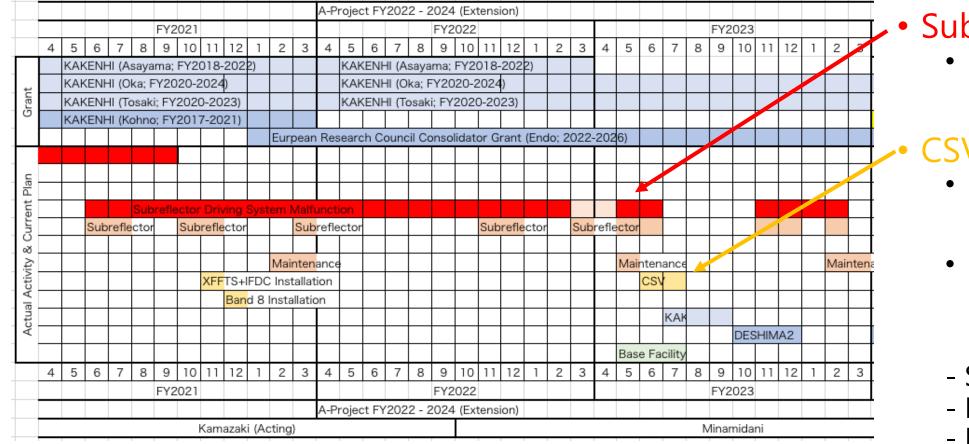

- The prime objectives of ASTE Project
 - **Promote science** with the submm single-dish telescope
 - **Promote development** of instruments and techniques for astronomical observations
 - → A precursor to ALMA and Submm Astronomy in terms of Science and Instrumentation
- 10-m sub-mm telescope at Pampa la Bola 4800m alt. (within the ALMA Site)
 - Since 2002
 - Surface accuracy: 19 μ m (\rightarrow ~40 μ m?)
 - Pointing accuracy: ~2" (rms)
- Site infrastructure


2023-12-21 | TM | ALMA/45m/ASTE

- Diesel generator (150kW-220V ×2)
- Fuel tank (15kL ×2, consumption 300L/d)
- Satellite network (1Mbps)
- Monitor (weather station, web cameras, etc.)
- <u>https://aste.nao.ac.jp/index_e.html</u>

													A-P	rojeo	t FY	202	2 - 2	2024	(Ext	tens	ion)															
						FY2	2021											FY2	022											FY2	023					
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
				-	~		FY2			2)				<u> </u>					FY2			2)														
Ħ				-)20-2							KAK	(ENF	H (O	ka; F	Y20	20-2	2024)															Ĺ
Grant				-			202							KAK	(ENF	H (Te	osak	i; FY	2020)-20	23)															L
~		KAł	KENF	HI (K	ohn	o; FY	201	7-20)21)																											L
_											Eur	pean	Res	searc	ch C	ound	il Co	onso	lidate	or G	rant	(End	do; 2	022-	202	e)										Ļ
									<u> </u>	<u> </u>																							\vdash			ļ
Lian																																	\vdash			ļ
																															\square					╞
Current						-	ector		_	-	tem I		_																							ļ
3			Sub	orefle	ecto	r	Sub	refle	ector	r		Sub	refle	ctor						Sub	refle	ctor		Sub	refle	ctor					\square					4
ð.					-		-			-																					$\left - \right $		⊢−−			ļ
					-	-		VE	TO			nten		}												Mai	nten	ance			$\left - \right $		⊢−−		Mai	r
ž					<u> </u>	-		XFF			C Inst																CS∖				\mid		<u> </u>			$\frac{1}{1}$
8			<u> </u>				-	<u> </u>	Ban	nd 8	Insta	ilatio	n											<u> </u>				12.01			$\left - \right $		⊢−−			$\frac{1}{1}$
Actual			<u> </u>		-	-	<u> </u>		-	-																		KAK			DES		12			┦
`			-		-		-	-			-													-		Baa	- Fo	o ilite a			DES	HIM	AZ	\rightarrow		ł
_	4	E	6	7	8	9	10	11	12	1	2	2	4	E	6	7	8	9	10	11	10	1	2	3			e Fa	cility 7	0	0	10	11	12	1	2	╀
-	4	5	0	1	8	-	2021	111	12	-	2	3	4	5	0	/	8	-	022	11	12	1	2	3	4	5	6	/	8	9 FY2		11	12		2	1
-					-	FT2	2021		-	-					+ 54	000					(a.m.)									FY2	023			_		ł
_								12		: (A		-	A-P	rojeo	πFY	202	Z - 2	:024	(Ext	ens	ion)									1	i d a					Ļ
								Kam	azak	a (Ae	cting)																	N	/linar	nidaı	ni				

• Struggled with Subreflector Problems

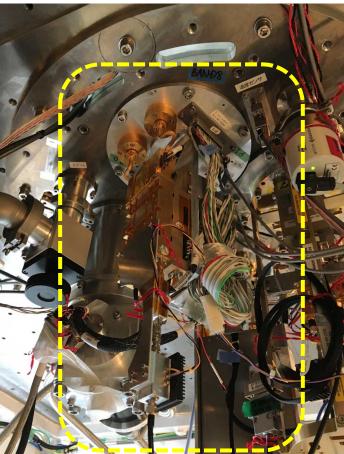

- 2022 Mar.
- 2022 Nov. Dec.
- On-Site Investigation and Recovery Works
 - One of the blocker was solved.
 - Another problem was occurred.
- 2023 Mar.: On-Site Investigation
 - The problem is NOT reproduced.

2023-12-21 | TM | ALMA/45m/ASTE

Sub-Ref Problem

- Recovered by replacing motor for X3 (Chopping axis)
- Wide-IF-bandwidth Band 8 Receiver (CAT8W)
- Digital Spectrometer (XFFTS) and IF Down Converter
- Sub-Ref Parameter
- Pointing
- Linearity
- measurement
- Spurious survey

2023-12-21 | TM | ALMA/45m/ASTE


Recent Upgrade: Wide-IF-bandwidth Band8 receiver cartridge

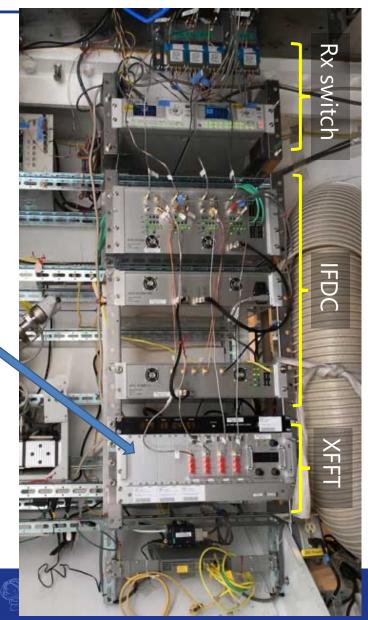
- Wide-IF-bandwidth Band8 receiver (CAT8W)
 - Supported by the KAKENHI project (P.I. Oka; Keio U.)
 - The current Band8 receiver cartridge is upgraded with SIS mixers employing high-Jc junctions developed by ATC
 - Same RF range, but IF bandwidth is expanded from 4-8 GHz to 4-18 GHz

e.g.) Simultaneous observations of CO and [CI] in Band 8 become available.

- Trec ~150-250 K,
- IRR ~10-15 dB at Mitaka
- Tsys ~ 600 1000 K (492 GHz)
- Issue
 - one Pol. -> DSB

Receiver	Band8	CAT8W
Beam		1
RF range	387-4	98 GHz
IF range	4-8 GHz	4-18 GHz
Sidebandort & Fu		3, LSB
Polarizations	Х	ζ, Υ

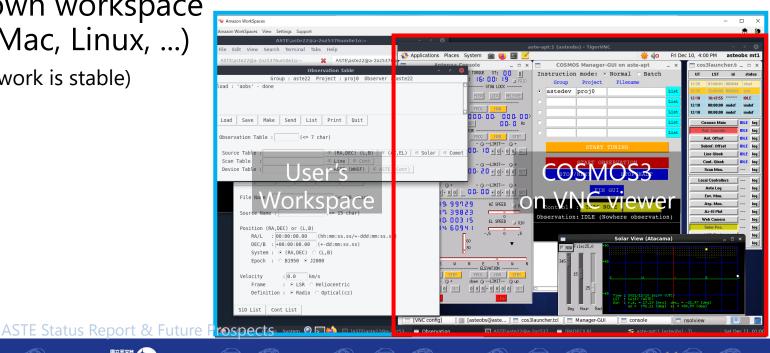
Recent Upgrade: Digital Spectrometer and IF Down Converter


RPG eXtended bandwidth <u>FFT Spectrometer</u> (XFFTS)

- Supported by the KAKENHI project (P.I. Tosaki; JUEN)
- 2.5 GHz BW / 32K channels [/Spw]
 - Δv =0.047 km/s, velo. width ~1500 km/s@492 GHz
- 10-bit ADC, 5Gsps
 - Good linearity

• <u>IF</u> <u>D</u>own <u>C</u>onverter (IFDC)

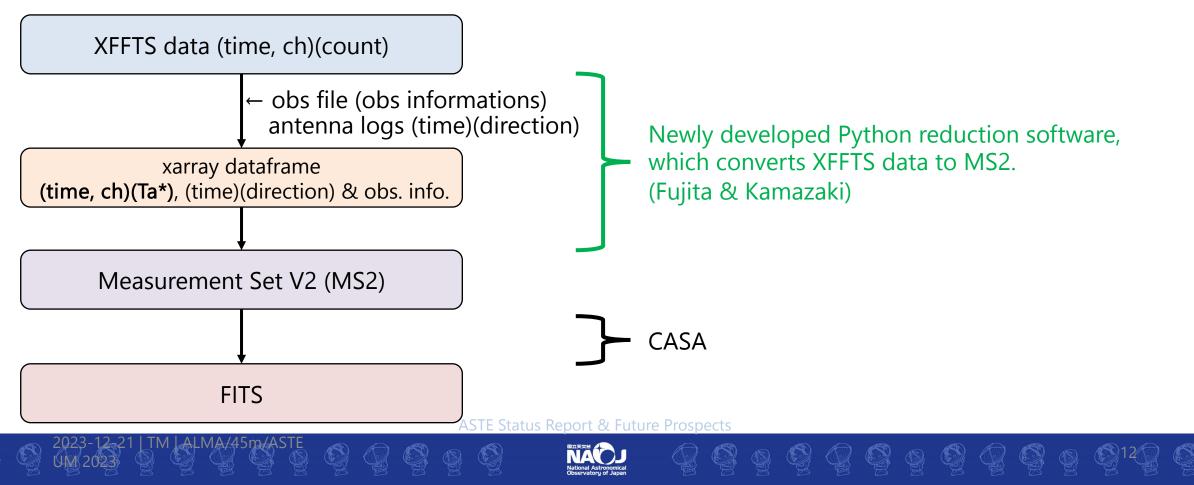
- 4 spectral windows (2.5 GHz BW) from 4 IF signals of a receiver
- Support of IF BW = 4-8GHz (DASH345, CAT10) and 4-18 GHz (CAT8W)


Spectrometer	WHSF -	→ XFFTS
IF bandwidth	2 / 4 GHz	2.5 GHz
# of channels	2,048 *1	32,768
# Of IFStatus Report &	Futur 4 / 2 cts	4
*1 NEWSTAR/NOSTAR	limit	

x4

Recent Update: User's Workspace, Remote Control Terminal

- Amazon Workspaces Virtual Desktop Infrastructure
 - A workspace is provided for a user
 - Observation preparation
 - VNC viewer to access the remote-control Virtual PC (on Amazon Web Services)
 - A user can connect its own workspace using AWS client (Win, Mac, Linux, ...) from EA (even from Chile if network is stable)



Recent Update: Data Reduction with CASA

Data reduction with CASA

- XFFTS data are reduced with CASA.
 - No plan to update NEWSTAR and NOSTAR to support XFFTS data.

Recent Update: Data Reduction with CASA

Data reduction with CASA

- XFFTS data are reduced with CASA.
 - No plan to update NEWSTAR and NOSTAR to support XFFTS data.
- MSv2 data generator (aka MERGE2) for WHSF and MAC is also under testing.
- These CASA MSv2 format data will be delivered and distributed through the NRO/ASTE Science Data Archive.

													A-P	rojeo	:t Fì	/202	2 - 2	2024	(Ex	tens	ion)															
						FY2	2021											FY2	022	2										FY2	023					
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
							FY2			2)				KAł	EN	HI (A	saya	ma;	FY2	018	202	2)														
-		KAK	(ENF	HI (O	ka; F	=Y20)20-2	2024	4)					KAł	ENF	HI (O	ka; F	Y20	20-2	2024)															
Grant		KAK	(ENF	HI (To	osak	i; FY	2020	D-20)23)					KAł	(ENł	HI (To	osak	i; FY	202	0-20	23)															
٦ (KAK	(ENF	HI (K	ohno	o; FY	201	7-20)21)																											
											Eur	pean	Res	searc	h C	ound	il Co	onso	lidat	or G	rant	(Enc	io; 2	022-	202	6)										
_ [
					Sub	refle	ector	Driv	ving	Syst	tem l	Malfu	unct	ion																						
Current			Sub	refle	ctor	·	Sub	refle	ector			Sub	refle	ector						Sub	refle	ctor		Sub	refle	ctor										
ے ا																																				
											Mai	nten	ance	1												Mair	nten	ance							Mair	nte
ACTIVITY								XFF	TS+	IFDO) Ins	tallat	ion														CS∖	r		7-						
									Ban	d 8	Insta	allatio	n																Ť							
crual																												KAK								
₹ [DES	HIM	A2			
																										Base	e Fa	cility								
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
						FY2	2021											FY2	022	2										FY2	023					
													A-P	rojeo	t Fì	202	2 - 2	2024	(Ex	tens	ion)															
-								Kam	azak	i (Δ)	cting	0							,										N	linar	nida	ni				

Science Observations

2023-12-21 | TM | ALMA/45m/ASTE

UM 2023

KAKENHI Projects

- Tosaki et al.
 - Investigation of physical/chemical properties of ISMs
 - Presentation by Fujita-san.
- Oka et al.
 - Search for Missing Black Holes in the Galaxy based on Submillimeterwave Observations
 - Presentation by Oka-san.

2023-12-21 | TM | ALMA/45m/ASTE

													A-P	roje	ct F	/202	2 - 2	2024	(Ext	tensi	ion)																		
						FY2	2021											FY2	022											FY	202	23							DESHIMA 2.0
	4	5	6	7	8	9	10	11	12	2 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	1	10 1	11	12	1	2	3		
	I	KAKE	ENH	I (As	saya	ma;	FY2	018-	-202	22)				KAł	KENI	HI (A	saya	ma;	FY2(018-	202	22)																	Session
÷	I	KAKE	ENH	I (O	ka; F	Y20)20-2	2024	4)					KAł	KENI	HI (O	ka; F	Y20	20-2	2024)																	<u> </u>	
Grant	I	KAKE	ENH	l (To	bsaki	i; FY	202	0-20)23)					KAł	KENI	HI (To	osak	i; FY	2020	0-20	23)																	1	• Oct. – mid Dec.
٥	I	KAKE	ENH	I (Ko	ohno	; FY	201	7-20)21)																													l	
											Eur	pear	n Re	sear	ch C	ound	cil Co	onsol	idate	or Gi	rant	: (En	do; 2	022	-20	26)												ļ	 Presentation by
																												\perp										ļ	
Plan										_																		_							\square			ļ	Tamura-san.
																													_						_4			ļ	
ren		_				refle			_	_	stem		_																_	_	_				Д			ł	
3-		S	Subr	refle	ctor		Sub	refle	ecto	r	_	Sub	prefle	ector	r					Sub	refle	ector	-	Sub	refl	lecto	or	_	_	_	+							ł	
×-			-+							+				-			-								┝					+	+	_	+	-	_				
ctivity			_					VER	TO			inten		e	-							-			<u> </u>	Ma	ainte	_	ce	-	+	_		+	_	Mair	nten		Sub-Reflector
- Act	_		_					AFF	_	_	C Ins 3 Inst			-	-		<u> </u>					-			-	-	CS	^v		+	_	_	_/		-			ł	
ctual	-+		\rightarrow				-		Bar	na a	sinst	allati	on	+	\vdash		-					\vdash			┝	+	+-	KA	14	+			4		\rightarrow			ł	driving system
- Sc	\rightarrow		\rightarrow				-		+	+		\vdash	┢	+	\vdash							\vdash			⊢	+	+-	1.7		+		ESH	IIMA	2	\rightarrow				anving system
-			-						-	+	+	-		+								-				Ra	ase F	acilit	tv/	+		2011		~ <u>~</u>	+			ł	malfunction
-	4	5	6	7	8	9	10	11	12	, 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		_	_	8	9	1	10 1	11	12	1	2	3	ł	manufiction
-	-	5	~	'		FY2			12			5	-4	5	0		-	FY2			12	<u> </u>	2	5	4		, 0	- '	0	-	202	_		12		-	5	ł	Nov19
-						1 1 2				+			Δ_Ρ	Proje	ct EV	(202			_		ion)	-				-		-			201	20	+		-			ł	• Nov.18. –
-								Kam	1979	ki (A	Acting	1)	A-1	, ole		202	2	.024		GHOI	511)									Mina	ami	dani						<u> </u>	
_							1		1020	- V	io ung	91		1	1		1					1	1	1			1		1	i vili ic		aann		1				-	

2023-12-21 | TM | ALMA/45m/ASTE

UNI 2023

ASTE Status Report & Future Prospects

16

Operation/Activities in CY2022 and CY2023

- Relocation of Base Facility in San Pedro de Atacama
 - TAO Base Facility -> Hotel Takha Takha
- NAOJ A-Project Extension for 3 years: FY2022 2024
 - Suspended process due to the COVID-19 and SubRef Malfunction has been resumed and on-going.
 - Completion of process in January is expected.
- Survey of Thesis/Dissertations: PhD, MC, 卒論
 - On-going.

2023-12-21 | TM | ALMA/45m/ASTE

• Plan to use ryunet / tennet.

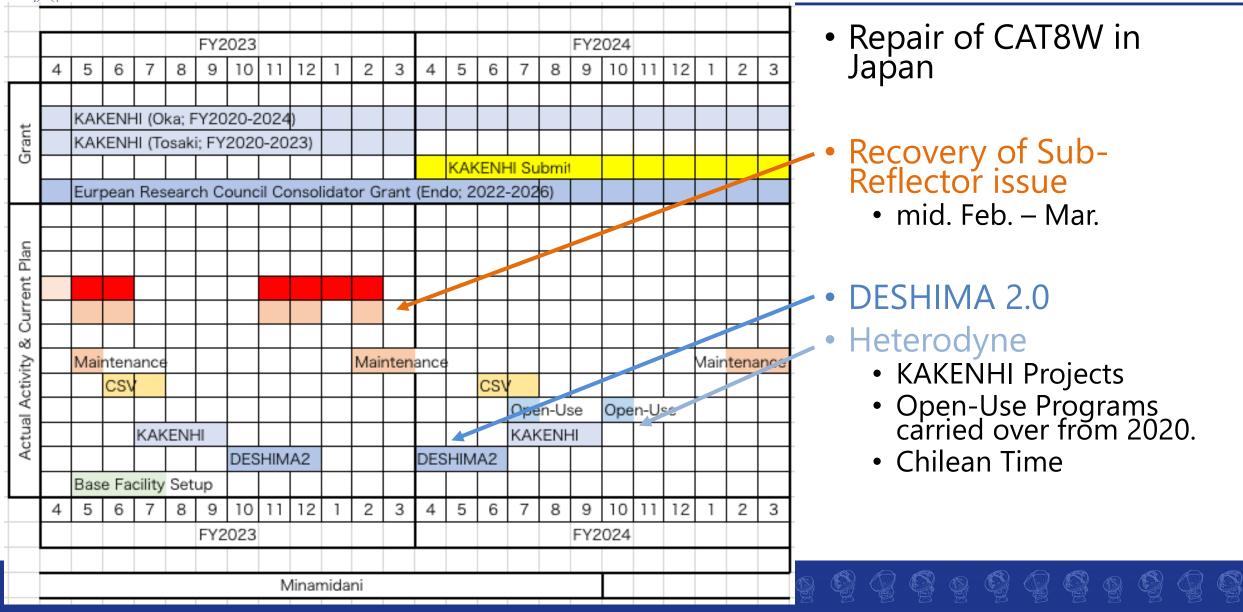
<u>Atacama Submillimeter Telescope Experiment</u>

- 10-m sub-mm telescope at Pampa la Bola
 - Surface accuracy: $19\mu m (\rightarrow \sim 40\mu m?)$
 - Pointing accuracy: ~2" (rms)
- Heterodyne Receivers
 - Frontends:
 - DASH345 (321-376GHz)
 - Wide-IF-bandwidth Band8 (387-498GHz)
 - Band10 (790-940GHz)
 - Backend: **XFFTS**
- DESHIMA2.0

2023-12-21 | TM | ALMA/45m/ASTE

<u>https://aste.nao.ac.jp/index_e.html</u>

ASTE Status Report & Future Prospects



18

Plan: CY2024 -

19

- ASTE Science Workshop
 - planning...

2023-12-21 | TM | ALMA/45m/ASTE

- International External Review
 - Mar.25 26 @ NAOJ Mitaka
- Improvement of Sub-Reflector Driving System
- A-Project Extension / New A-Project Application for FY2025 27
- NAOJ Science Roadmap, NAOJ Project Implementation Plan for FY2028 -

- The prime objectives of ASTE Project
 - **Promote science** with the submm single-dish telescope
 - **Promote development** of instruments and techniques for astronomical observations

➔ A precursor to ALMA and Submm Astronomy in terms of Science and Instrumentation

- 2022 Jan. 2023 Mar.
 - Struggled with Sub-reflector Problems
 - Updates and Commissioning of New Systems
- 2023 Apr. Dec.
 - 2023 May Sep.: Heterodyne Session (321-376 GHz / 387-498 GHz / 790-940 GHz)
 - 2023 Oct. Dec.: DESHIMA2.0 (220 440GHz)
 - 2023 Nov. Sub-Ref Driving System malfunction
- 2024 Jan. –

2023-12-21 | TM | ALMA/45m/ASTE

- Recovery of Sub-Ref. Driving System
- 2024 Apr. June: DESHIMA2 (220 440 GHz)
- 2024 June Dec.: Heterodyne Session (321-376 GHz / 387-498 GHz / 790-940 GHz)

- Prediction of Sub-Reflector malfunction?
 - It seems impossible. Need some monitor points, etc. but...
- Surface Accuracy

2023-12-21 | TM | ALMA/45m/ASTE

- No recent measurements, such as holography.
- Asayama et al. 2022, PASJ, 74, 678
 - ASTE Band 10 (787-950 GHz) heterodyne receiver: System description, commissioning, and science verification
 - https://ui.adsabs.harvard.edu/abs/2022PASJ...74..678A/abstract
 - Aperture efficiency ~ 10 % @ 890 GHz
 - Main beam efficiency ~ 12 % @ 890 GHz: Consistent with Sugimoto et al. 2004 (~ 13 %)
- Approach to the Sub-Reflector Driving System malfunction
 - Short-Term: Replacement of a malfunctioned jack out of 6 jacks to resume observations as soon as possible.
 - Mid-Term (FY2024): Replacement of a whole system.

