FY2022 ALMA/45m/ASTE Users Meeting

ACA Spectrometer

Shun Ishii, Jihyun Kang, Yusuke Aso, Hiroshi Nagai on behalf of the ACA Spectrometer team

2022-12-21

2022/12/21

ACA Spectrometer (ACASPEC)

- New backend for the Total Power array from an EA Development Program
- Development is led by KASI in collaboration with NAOJ

Engineering Team

Jongsoo Kim (PI)

Jongsuk Hong

2022/12/21

Manabu Watanabe

Scott Zang

Makoto Shizugami

Susumu Nakayama

CSV Team

Shun Ishii

Hiroshi Nagai

Jihyun Kang

Yusuke Aso

ACA Spectrometer (ACASPEC)

- Replace the functionality of the ACA Correlator for the TP array
- Target to offer from Cycle 10

Current Configuration

ACA Spectrometer (ACASPEC)

- Replace the functionality of the ACA Correlator for the TP array
- Target to offer from Cycle 10
 - → All arrays will be independent!

New Configuration

Operational Advantage:

• The TP array will be operated independently from the 7m array/the ACA correlator, which increases the observing efficiency of the TP array.

Better spectral dynamic range:

• The spectral dynamic range can be improved up to 10000:1 by increasing the number of bits to 32-bits for FFT/multiplication. (the ACACORR uses 16-bits for FFT and 4-bits for multiplication).

• Expandability:

 The ACASPEC is a GUP Spectrometer. Thanks to the software-based development and native parallel processing of GPU, the ACASPEC has excellent scalability to basebands, wider bandwidths, or complex processing in the WSU and further upgrades near future.

Functionality and Architecture

- The ACASPEC will
 - Provide auto-correlation data streams from the four TP antennas
 - Calculate cross-antenna correlation for calibration observations (ACASPEC is also a small correlator)
- Digital Spectrometer based on the Graphical Processing Unit (GPU) technology
 - Computing capacity is rapidly growing
 - All the processing is done in the software
- GPU has advantages on
 - Parallel processing
 - Pipeline processing
 - Expandability
- Currently being widely used for many backends of radio telescopes :
 - VEGAS at GBT
 - PolariS at NRO45m (Kameno et al. 2014)
 - LOFAR etc.

System of the ACASPEC: ASMs and ASC

2022/12/2

Commissioning and Science Verification (CSV)

Parameter	Req. No.	Value	CSV ticket
IF bandwidth	CORL-	4 baseband pairs of 2 (polarizations) x	CSV-3771
	64.00.00.00-	2 GHz (=16 GHz) bandwidth per an-	
	00220-00/R	tenna.	
Spectral resolution	CORL-	all the spectral resolutions offered in	CSV-3771
	64.00.00.00-	the observation modes in Table 1-7 of	
	00230-00/R	[AD01].	
Spectral windows	CORL-	The ACA Spectrometer (as the ACA	CSV-3771
	64 00 00 00	Correlator) should support the canabil	

Parameter	Req. No.	Value	CSV ticket
Delay correction	CORL- 64.00.00.00- 00308-00/A	The sensitivity loss of the ACA Spec- trometer due to imperfect delay correc- tion should be smaller than 1% ¹ .	CSV-3756
Output data format	CORL- 64.00.00.00- 00310- 00/B T	BDF	all

20 specifications/requirements have been identified and validated:

- Basic capability as the backend of the TP array:
 - Number of antenna, Bandwidth, Spectral setups, polarization, Frequency Profile Synthesis

• Performance:

Linearity, dynamic range, stability

End-to-End testing

• Generation and execution of SB, Data archiving with correct format, Manual and pipeline processing

_				
	Quantization levels		3-bits	All input data
0	of input data			should be 3-
				bits
	Maximum output		The maximum output data rate shall	CSV-3778
0	data rates		not exceed 17 MB/sec.	
5	Sensitivity Loss	CORL-	<2.1%. The sensitivity loss of FFT with	Discussion
		64.00.00.00-	5% overlapped data is less than 2.1%,	can be
		00305-00/A	which is shown in Sect. 5.4 of [AD01].	found at
				CSV-3482.

Stability	#261 [RD01]	of	ASD < 1.0* 10-3 on time scales of 0.05 to 100 seconds ²	CSV-3757
Spurious signals	#295.2 [RD01]	of	to be suppressed down to 1/3 with re- spect to the standard deviation (SD) of a 16-hour integrated spectrum with 1-sec on-off cycles and 1-MHz of the spectral resolution.	CSV-3727
End-to-end test				CSV-3776

CSV Result: First light of auto-correlation

- The first light was archived on 2022-02-22 using the SiO(J=2–1) maser line at 86.243 GHz toward Orion KL.
- This confirmed that all the signal paths from the antenna to the archive are well connected and processed.

Solution CSV Result: Consistency with the ACA Correlator

- Spectral setups and their consistency within the ACASPEC and with the ACACORR were verified for the combinations of the polarization, the resolution, and the averaging factor
- The consistency of the Jy/K factor was also confirmed.
 - ACASPEC: 42.0 ± 1.1
 - ACACORR: 42.0 ± 1.3

2022/12/2

- The result indicates that the ACASPEC has enough linearity performance
- The linearity was also validated using Trx and Tsys spectra.

ACA Spectrometer							
Antenna	spw	Jy/K	Target	BB	Freq (GHz)	Elevation (degree)	Temperature
PM02	17	41.2414333	3c454.3	1	85.11	43.08	-5.57
PM02	19	41.4717804	3c454.3	2	87.00	43.08	-5.57
PM02	21	43.0697768	20464 2	0	07 1 1	40.00	-5.57
PM02	23	43.7972127			_		-5.57
PM03	17	41.5022978	То	ct	da	ta	-5.57
PM03	19	42.8255566		3 L	ua	La	-5.57
PM03	21	41.36979		-	.		-5.57
PM03	23	40.3893752	3c454.3	4	99.00	43.08	-5.57
PM04	17	43.3080328	3c454.3	1	85.11	43.08	-5.57
PM04	19	43.1285082	3c454.3	2	87.01	43.08	-5.57
PM04	21	40.6611562	3c454.3	3	97.11	43.08	-5.57
PM04	23	40.944874	3c454.3	4	99.00	43.08	-5.57
ACA Correlator							
Antenna	spw	Jy/K	Target	BB	Freq	Elevation	Temperature
			Ŭ		(GHz)	(degree)	(C°)
PM02	17	41.5338278	3c454.3	1	85.10	39.06	-5.58
PM02	19	42.3203145	3c454.3	2	87.00	39.05	-5.58
PM02	21	40.0194355	3c454.3	3	97.1	39.05	-5.58
PM02	23	40.906971	3c454.3	4	99.00	39.05	-5.58
PM03	17	41.2985662	3c454.3	1	85.10	39.05	-5.58
PM03	19	42.562381	3c454.3	2	87.00	39.05	-5.58
PM03	21	41.450369	3c454.3	3	97.10	39.05	-5.58
PM03	23	41.2984881	3c454.3	4	99.00	39.05	-5.58
PM04	17	44.9436385	3c454.3	1	85.10	39.05	-5.58
PM04	19	43.9136012	3c454.3	2	87.00	39.05	-5.58
PM04	21	42.2014481	3c454.3	3	97.10	39.05	-5.58

SCSV result: Spectral dynamic range

• The spectral dynamic range has been verified. The achieved noise rms is 8.6 mK for the peak intensity of 92.1 K, and thus the resultant S/N is ~ 11000, achieving the goal.

14

CSV Result: CASA SD Pipeline processing

- CASA Single-Dish pipeline can process the data taken by the ACASPEC for SBs of the standard OTF mapping mode and the TP spectral scan mode
- The intensity in the ACASPEC data agrees well with that of the ACACORR data.

2500

2000

1500

Total Intensity: CenterFreq.= 230.530 GHz

75000

15

-05121100

05'22'0

Integrated Spectrum

2000

1500

2022/12/21

Summary

- The ACA Spectrometer is the new backend for the TP array
- It is expected the ACASPEC will increase the observing efficiency of the TP array
- ACASPEC was installed on the ALMA site in February
- Commissioning and Science Verification has been carried out using the on-site environment.
- We successfully verified almost all test items, including end-to-end testing and ALMA single-dish pipeline processing, without blockers.
- Final implementation in the ALMA subsystems is ongoing toward offering science operations.