銀河系円盤の化学・力学進化と太陽

石垣美歩(国立天文台ハワイ観測所・三鷹)

「太陽物理学と恒星物理学の相互交流と将来的展望」 2011/12/26-28:東京大学本郷キャンパス

Outline

Motivation

- The Sun and the MW disk system
- Formation and evolution of the MW disk system
 - Models for the disk formation & evolution
 - Observational constraints
- Where are the siblings of the Sun?

Motivation: Sun as a member of the MW disk system

- Questions:
 - Why the Sun/Solar system has acquired the current properties?
- These are determined by...
 - Environment of the birthplace (stellar density, nearby SNe, etc)
 - Astrophysical impacts as it travels through the Galaxy
 - Properties (size, IMF, etc) / destruction process of the birth cluster
- ◆ Search for the Solar siblings (兄 弟星)

Brown et al. 20<mark>10</mark>

The Solar system in the MW disk

Position

- ~7.5-8.5 kpc from the Galactic center
- Kinematics
 - (U, V, W)_☉=(11.10, 12.24,
 7.25) km/s (Schönrich+ 10),
 relative to V_{LSR}=220 km/s
- Chemical abundance
 - More metal-rich than other stars around the Sun

The Milky Way disk system

Thin disk

- ρ∝exp(-Z/H), H ~ 300 pc
- metal-rich: [Fe/H]~0.0
- Rotational velocity
 - V_{ϕ} ~220-240 km/s
- low [α/Fe]
- 🔶 Thick disk
 - ♦ H ~ 1 kpc
 - metal-poor: [Fe/H]<-0.5</p>
 - V_φ~160-180 km/s

high [a/Fe]

Stellar density distribution (Gilmore & Reid 1983)

(Distance from the Galactic plane)

* [a/Fe]=average of [Mg/Fe], [Si/Fe], [Ca/Fe] and [Ti/Fe]

Formation/evolution of the MW disk system

Violent process

- Accretion of dwarf galaxies
- Dynamical heating via minor mergers of dwarf galaxies/dark matter subhalos
- Gas-rich mergers at the early phase

Secular process

Scattering of disk stars by the bar, spiral arms and/or giant molecular clouds cause...

- Radial migration
- Increase in velocity dispersion

Age-metallicity relation

Edvardsson et al. 1993

- Scatter in log T₉-[Fe/H] relation is larger than the observational errors.
 - ※ τ₉: Age of a star in unit of 10⁹ yr
 The scatter, σ([Fe/H]), is larger for
 older stars

Evidences of the radial migration: Rotational velocity (V_{ϕ}) -[Fe/H]

- Local metal-poor disk stars preferentially have high rotational velocity
 - ⇒ Consistent with that these stars came from the outer disk
- Radial migration timescale:
 1.5-3.7 kpc /Gyr

Thin/Thick disk division using [a/Fe]

SDSS SEGUE sample:

- d< 3kpc, 7<R<10 kpc
- 17,300 dwarf stars
- R~2000

T_{eff}, logg, [Fe/H], [α/Fe]

Lee et al. 2011

Thin disk

- Metal-poor stars have higher Vø
- Consistent with the migration model (metalrich stars come from inner disk, metal-poor stars come from outer disk)
- Thick disk
 - Inconsistent with the migration model

Lee et al. 2011

Lee et al. 2011

Thin disk: migration model

•Thick disk: heating model または gas-rich merger model

Implications on the formation and evolution of the MW disk(s)

- Radial migration have played a significant roll on the evolution of the thin disk
 - Spread in age-[Fe/H] relation
 - Vφ -[Fe/H] relation
- Violent process (heating/gas-rich mergers) are needed for the formation of the thick disk.
 - Vφ [Fe/H] relation
 - e distribution

⇒ The Sun/Solar system has also experienced dynamical processes due to the disk evolution during its history

Can we find Solar siblings ?

- In a simplified simulation, ~10-60 Sun's siblings is expected within 100pc (Portegies Zwart 09)
- Currently available data (etc. Hipparcos) is not sufficient to find even 1 sibling (Brown+ 10).
- Dynamical evolution of the disk stars (violent/secular) further complicate the search through positions and kinematics alone.
- Combination of precise astrometry data (GAIA, etc) +
 detailed chemical abundance patterns are necessary