Measurement of Transmission Losses of Superconducting Coplanar Waveguide and Microstrip Line with On-chip Resonators at 2 mm Wavelength

Wenlei Shan and Shohei Ezaki

National Astronomical Observatory of Japan

This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant Number 21H01134.

Demonstration of a Millimeter-wave Multibeam Receiver Implemented with Superconducting MMICs

Wenlei Shan, Shohei Ezaki, et al., "A Compact Superconducting Heterodyne Focal-Plane Array Implemented with HPI (Hybrid Planar Integration) Scheme," IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 6, pp. 677-689, Nov. 2020.

2022/10/18

Compact SIS Mixer MMIC

This work will answer the following question: What is the loss (noise contribution) from the CPW and MS transmission lines on this MMIC?

Measurement Scheme

Membrane-based Planar OMT

30

4

Measurement Setup

DC measurement

32ND INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY

Resonator and Transmission Line Parameters

	Strip	Gap	Z_0	ν_a	Structure
CPW	3 µm	4 μm	69 Ω	0.428 c	Si
MS	3 µm		20 Ω	0.436 c	Si

Insulator layer: SiO₂ 300 nm

Coupling Q's for CPW and MS are about 150 and 30 respectively.

2022/10/18

Resonance Curves and Fitting

Independent fitting for each resonator with Lorentzian function

$$\left|S_{21}\right|^{2} = f(\omega_{i}) = \left|1 - \frac{\frac{Q_{t}}{Q_{c}}}{1 + jQ_{t}\frac{\omega - \omega_{i}}{\omega_{i}}}\right|^{2}$$

Fitting of all resonators simultaneously to count the interaction between resonators.

 $|S_{21}|^2 = f(\omega_1)f(\omega_2)f(\omega_3)f(\omega_4)$

32ND INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY

Q factors and Dependence on Temperature

32ND INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY

A different method (Conventional)

Measurement with Network Analyzer

The Back-to-Back Probe will be presented in ASC2022. A. Masukura, W. Shan, S. Ezaki, et al., etc. "Silicon Membrane-based Superconducting Wave-guide-to-CPW Transitions at 2 mm Band"

2022/10/18

Measurement Setup

Resonance Curves

The measured transmission of resonator-loaded transmission line and a reference sample without resonators.

Conclusion of Q measurement

The distribution of all measured intrinsic Q factors. Three types of resonator: CPW, MS and capacitor-loaded CPW.

Conclusion

- An "in-situ" thin-film superconducting transmission line measurement method has been established for MMIC mixer development. This measurement uses SIS junctions as detectors and one of polarization as reference.
- The results were verified by measuring an resonator-loaded transmission line with network analyzer. This measurement platform is useful in transmission measurement of various 2-port superconducting thin film circuits.

