
Length L 300 m
Free spectral range FSR 500 kHz
Input mirror transmission t21 0.7%
End mirror transmission t22 2.9%
Finesse F 172
Linewidth (FSR/Finesse) dv 2.9 kHz
Cavity pole 1.45 kHz
modulation depth m 0.1 rad
Modulation frequency Ω 2π · 90 Hz
Input Power P0 0.25 mW

Table 1. Filter cavity parameters for green light

1. Optical gain computation

In Tab ?? are reported the parameter used in the following computation
The modulated input beam has the form:

Ein = Eei(ωt+m sin Ωt)

which can be expanded in terms of Bessel functions as

Ein = E[J0(m)eiωt + J1(m)ei(ω+Ω)t) − J1(m)ei(ω−Ω)t]

This shows that the phase modulation has created two sidebands at a distance Ω from
the carrier, whose amplitudes depends on the modulation depth.

The reflectivity of the filter cavity for the green light can be written as

Rcav =
−r1 + r2 exp

(
i ω
FSR

)
1− r1r2 exp

(
i ω
FSR

)
The beam reflected from the cavity is :

Eref = E[Rcav(ω)J0(m)eiωt +Rcav(ω + Ω)J1(m)ei(ω+Ω)t −Rcav(ω − Ω)J1(m)ei(ω−Ω)t]

From that we can compute the power impinging on the photodiode.

Pref =Pc|Rcav(ω)|2 + Ps|Rcav(ω + Ω)|2 + |Rcav(ω − Ω)|2

+ 2
√
PcPs[Re[Rphs] cos Ωt+ Im[Rphs] sin Ωt]

with Pc = P0J
2
0 (m), Ps = P0J

2
1 (m) and Rphs = Rcav(ω)R∗

cav(ω+Ω)−R∗
cav(ω)Rcav(ω−Ω)

The reflected power is composed by a DC part and two terms oscillating at the modu-
lation frequency, whose amplitude is proportional respectively to the imaginary and real
part of the function Rphs and thus keep the important information on the phase of the
reflected beam. These terms arise from the beating of the carriers and the sidebands. Here
we neglect the beating of each sidebands whit the other one. In order to extract the phase
information contained in the oscillating terms, the signal measured by the photodiode is
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PD Photosensitivity 16 · 103 V/A
PD transipendence 0.25 A/V
GPD 4 · 103 V/W
GOPT 1.3 · 10−8 W/Hz
GMIX 0.5 V/V
GLPF

Table 2. Gains recap

demodulated using a mixer and a lowpass filter. Choosing the appropriate frequency and
phase for the local oscillator we can select one of the two oscillating terms. If the modula-
tion frequency is higher then the cavity linewidth (Ω > FSR/F ), as in our case1, near the
resonance Rcav(ω ± Ω) ' −1 thus Rphs = i2 Im(Rcav(ω) is purely imaginary and only the
part proportional to the sine survives. The error signal will be

err = GPDGMIXGLPF2
√
PcPs Im(Rphs) ' GPDGMIXGLPF 4

√
PcPs Im(Rcav(ω)]

where the last equality holds it the region where sidebands are not resonant, as can be seen
in picture ??.

As expected the error signal is linear around the region where it cross the zero. Once
the lock is acquired, the frequency of the laser will be controlled in order to be always
about the resonance. The linear coefficient of the error signal about the zero point, also
known as optical gain, will tell us how many Watt2 correspond to a shift of 1 Hz of the
laser frequency from the resonance. Around ω = 0 we have

Im(Rcav) =
r2(1− r2

1)

FSR · (1− r1r2)2

switching to f = ω/2π the linearised error signal will be

err = GPDGMIXGLPF 8π
√
PcPs

r2(1− r2
1)

FSR · (1− r1r2)2︸ ︷︷ ︸
GOPT[W/Hz]

f

Using the parameters in tab ?? we find GOPT = 1.32 · 10−8 W/Hz

1in this case the modulation frequency is higher than the FSR, in order not to have resonant sidebands
it should be Ω mod FSR < dv

2or Volt if we already take into account photodiode and demodulation gains
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Figure 1. Comparison between the PDH error signal and its linearisation
around zero

Figure 2. Comparison between the PDH error signal (orange line) and its
approximation (blue line) assuming Rcav(ω±Ω) ' −1 that, as can be seen,
is valid only in the regions where the sidebands are not resonant


