Overview of the filters in the absorption measurements

```
Filters
median ‡ 20
averaging ‡ 1
phase ‡ 115
```

Median filter	Average filter
N=3 (filter array size) x = [2 80 6 3]	x [80] + x [81] + x [82] + x [83] + x [84] y [82] =5
median filtered output signal y :	Same effect as increasing the Lock-in time constant
y[1] = Median[2 2 80] = 2 y[2] = Median[2 80 6] = Median[2 6 80] = 6 y[3] = Median[80 6 3] = Median[3 6 80] = 6 y[4] = Median[6 3 3] = Median[3 3 6] = 3	 Phase filter
y = [2 6 6 3].	$AC' = AC\cos(\phi - \phi_{\text{expected}})$
In this example the value 80 has been removed This is the spiky noise	Makes the pure noise oscillating around zero

cancellation concept.

Measurement of the Tama-size sapphire sample

Sampling rate: 100ms Median array: 100 (10s) Average array: 600 (1min) Acquisition time: 1 hour

The cross point between pump and probe moves if the refractive index changes Depending on the probe incidence angle (the pump incidence is perpendicular)

Using Sapphire sample (n=1.76), the cross point between probe and pump, moves of a factor of 2.0 ± 0.2 from the incidence surface

This also means that to scan the thickness we have to move the sample by half of the thickness

Measurement of the Tama-size sapphire sample

Sampling rate: 100ms Median array: 100 (10s) Average array: 600 (1min) Acquisition time: 1 hour

The crosspoint is outside the sample No absorption signal visible

Measurement of the Tama-size sapphire sample I moved the sample

Sampling rate: 100ms Median array: 100 (10s) Average array: 600 (1min) Acquisition time: 1 hour

Measurement of the Tama-size sapphire sample

