Overview of the filters in the absorption measurements

Filters

```
median * 20
averaging* 1
    phase* }11
```


- Median filter

$\mathrm{N}=3$ (filter array size)
$x=\left[\begin{array}{ll}2 & 80 \\ 6 & 3\end{array}\right]$
median filtered output signal y :
y[1] = Median[2 2 80] = 2
y[2] = Median[2 80 6] = Median[2 6 80] = 6
y[3] = Median[80 6 3] = Median[3 6 80] = 6
y[4] = Median[6 3 3] = Median[3 3 6] = 3
$y=\left[\begin{array}{lll}2 & 6 & 6\end{array}\right]$.
In this example the value 80 has been removed
This is the spiky noise cancellation concept.

- Average filter

$$
\begin{aligned}
& x[80]+x[81]+x[82]+x[83]+x[84] \\
& y[82]= \\
& 5
\end{aligned}
$$

Same effect as increasing the Lock-in time constant

- Phase filter

$$
A C^{\prime}=A C \cos \left(\phi-\phi_{\text {expected }}\right)
$$

Makes the pure noise oscillating around zero

Measurement of the Tama-size sapphire sample

Sampling rate: 100 ms
Median array: 100 (10s)
Average array: 600 (1min)
Acquisition time: 1 hour

Histograms of the AC signal filtered

The cross point between pump and probe moves if the refractive index changes Depending on the probe incidence angle (the pump incidence is perpendicular)

Applying Snell's Law:

$$
\begin{aligned}
& \begin{array}{l}
\sin \left(\alpha_{0}\right) n_{0}=\sin \left(\alpha_{1}\right) n_{1} \\
n_{0}=1 \\
n_{1}=1.76
\end{array} \\
& X_{1}=X_{0} \frac{\tan \left(\alpha_{0}\right)}{\tan \left(\alpha_{1}\right)} \\
& \quad=X_{0} \frac{n_{1}}{n_{0}} \frac{\cos \left(\alpha_{1}\right)}{\cos \left(\alpha_{0}\right)} \\
& =X_{0} 1.76 \frac{\cos \left(\frac{\sin ^{-1}\left(\alpha_{0}\right)}{1.76}\right)}{\cos \left(\alpha_{0}\right)} \\
& \alpha_{0}=6^{\circ} \rightarrow X_{1}=X_{0} \cdot 1.81 \\
& \alpha_{0}=7^{\circ} \rightarrow X_{1}=X_{0} \cdot 2.17
\end{aligned}
$$

Using Sapphire sample ($\mathrm{n}=1.76$), the cross point between probe and pump, moves of a factor of 2.0 ± 0.2 from the incidence surface

This also means that to scan the thickness we have to move the sample by half of the thickness

Measurement of the Tama-size sapphire sample

Sampling rate: 100 ms Median array: 100 (10s)
Average array: 600 (1min)
Acquisition time: 1 hour

Histograms of the AC signal filtered

The crosspoint is outside the sample No absorption signal visible

Measurement of the Tama-size sapphire sample I moved the sample

Sampling rate: 100 ms Median array: 100 (10s)
Average array: 600 (1min) Acquisition time: 1 hour
The crosspoint is inside the sample

Measurement of the Tama-size sapphire sample

Outside

Tama-size sapphire sample

Inside

Tama-size sapphire sample

