Dec. 20, 2016 @ NAOJ

NRO Legacy (Galaxies)

CO Multi-line Imaging of Nearby Galaxies

SORAI, Kazuo (Hokkaido University)

Main Goals of COMING

statistically understanding of ...

distribution & kinematics

What mechanisms do determine molecular gas distribution?

environmental effect

How does environment affect on star formation?

physical properties

How does the above affect on physical condition of molecular gas?

Overview of the Survey

OTF mapping with FOREST

• targets: 238 nearby galaxies

• lines: ^{12}CO , ^{13}CO , ^{18}O J=1-0 (simultaneously)

• sensitivity: $\Delta T_{MB} = 80 \text{ mK}$

• velocity resolution: 10 km s⁻¹ \rightarrow 2.4 × 10⁶ M_{\odot} @ 20 Mpc

mapping area: 70% of D₂₅
 ← typically covering the CO disk

observation time: 1,200 hr

Observations in the Last Season

 allocation: Dec. 21, 2015–May 24, 2016 (total: 610 hrs)

not observed (146) snow (37) backup observation (66) instrumental trouble (36)

- (–) higher system temperature (~250 450 K)
- (+)improvement of the telescope system
- (+) using an observation ranking system
- (+) using pipe-line analysis system

Observations in the Last Season

galaxies completed to map: 45
 (total 50 galaxies including the past pre-season)

Ex. of Data (NGC 3556, NGC 4303)

Publication and Scientific Activities

- publication to a refereed journal
 - Muraoka, et al. 2016, PASJ, **68**, 89
 - Hatakeyama, et al. 2016, submitted to PASJ
- Workshop 'COMING 2016'
 - held on Nov. 17 18 @ NAOJ
 - > 50 participants
- 'COMING-FUGIN' inter-legacy workshop
 - held on Aug. 31 Sep. 1 @ NRO

Development: Observation Ranking

$R \equiv \eta_{\rm eff} \, \eta_{\rm trk} \, \eta_{\rm point} \, P_{\rm prop} \, f_{\rm comp}$

- $\eta_{\rm eff}$: observation efficiency = $\eta_{\rm atm}$ $\eta_{\rm map}$ observing at higher EL* lower Tsys \rightarrow larger map
- $oldsymbol{\eta_{\mathrm{trk}}}$: antenna moving efficiency
- η_{point} : data acquisition rate affected by pointing
- P_{prop} : proposal priority within our team
- f_{comp} : achievement of observation

Development: Auto-flagging

smoothing many channels (32 channels)

baseline fitting regions

data are removed objectively in the case

$$\frac{rms_{\text{original}}}{\sqrt{n}} \times f_{\text{salvage}} < rms_{n-\text{ch smoothed}}$$

empirically 2 - 3

How Does f_{salvage} works? • rms vs. f_{salvage} • integrated intensity for several f_{salvage} (NGC 3147) • g_{Salvage} (NGC 3147)

Distribution & Kinematics

- internal & environmental secular evolution (Kormendy & Kennicutt 04)
- one of the key observables= molecular gas concentration
 - ← fuel of AGN, materials of nuclear starburst
- how does molecular gas concentrate in galactic disks?

Preliminary Study (Yanagitani+)

- sample (barred spirals: 42, non-barred: 21)
 - COMING (32) + CO Atlas + HERACLES

(Kuno+ 07; Leroy+ 09)

- disk radius $\equiv R_{K20}$, central region $\equiv R_{K20}/8$
- molecular gas concentration index

$$f_{1/8} = \frac{M_{\rm H_2}(r \le R_{\rm K20}/8)}{M_{\rm H_2}(r \le R_{\rm K20})}$$

Molecular Gas Concentration

• higher $f_{1/8} \rightarrow$ barred spirals

Summary

- completed mapping of 45 galaxies in the last season (+5 galaxies in the pre-season)
- developing objective pipe-line reduction system
 - → taking a little while to reduce data
- two master theses, six graduation theses will be published soon
- expanding the members

