Cycle 8 2021 Observing Capabilities

Hiroshi Nagai, EA-ARC, ALMA Project, NAOJ

1. ALMA Basics

ALMA Arrays

Three Important Angular Scales

the disk with some variation.

Mosaicking / Multiple Pointing

• Sources larger than single pointing FoV, or multiple sources spread over a larger area, must be mosaiced together using multiple pointings.

Mosaicking

Multiple pointing

Frequency Bands

- 10 receiver bands (Band 1&2 will be available future)
- Atmospheric opacity and phase stability tends to be poor at higher frequencies and at frequencies near water absorption lines.
 - Requires good weather condition

Instantaneous frequency coverage

- ALMA receives signals in two sidebands (green-ish color)
- Up to four basebands can be placed either in a sideband or two sidebands
- Possible to place up to four spectral windows (spws) within each of these basebands (blue-ish bars)
- Each spw forms a final contiguous spectrum (You will not receive data outside of spws)

Polarization

600,0000

DSB Imene

400,0000

- ALMA can provide full polarization products (XX, YY, XY, YX) so that one can produce Stokes I, Q, U, and V images.
- At least ~3-hrs observation is required to calibration instrumental polarization.

2. Cycle 8 2021 Capabilities

New in Cycle 8

- Solar observations in Band 5 in Configurations C-1, 2, 3
- Bands 9 and 10 with the stand-alone 7-m Array
- Spectral scans with the 7-m Array
- Mosaicking of continuum linear polarization observations (Bands 3 to 7) with the 12-m Array
- Stand-along 7m polarization (single field/multiple pointing, linear, Bands 3-7, only in main call)
- VLBI observations of faint science targets (A passive-phasing mode that allows observations of fainter VLBI targets with a correlated flux density < 500 mJy)
- Observations of pulsars using the 12-m Array as a single dish

Antennas, Receiver Bands

- Number of antennas
 - >43 antennas in the 12-m Array.
 - >10 7-m antennas (for short baselines) and 3 12-m antennas (for single dish) in the ACA.
- Receiver bands

ACA 7m array

Configuration

- Maximum baselines for the antenna configurations will vary from 0.16 km to 8.5 km. Configurations C-9 and C-10 will not be offered in Cycle 8 2021.
- Maximum baselines of 3.6 km for Bands 8, 9 and 10
- Maximum baselines of 8.5 km for Bands 3 to 7

Config	Lmax		Band 3	Band 4	Band 5	Band 6	Band 7	Band 8	Band 9	Band 10		
	Lmin	-	100 GHz	150 GHz	183 GHz	230 GHz	345 GHz	460 GHz	650 GHz	870 GHz		
7-m Array	45 m	AR	12.5″	8.4″	6.8″	5.4″	3.6″	2.7″	1.9"	1.4"		
	9 m	MRS	66.7″	44.5″	36.1″	29.0"	19.3″	14.5″	10.3″	7.7″		
C43-1	161 m	AR	3.4″	2.3″	1.8″	1.5″	1.0"	0.74″	0.52″	0.39"		
	15 m	MRS	28.5″	19.0″	15.4"	12.4"	8.3″	6.2″	4.4"	3.3"		
C43-2	314 m	AR	2.3″	1.5″	1.2″	1.0"	0.67"	0.50"	0.35″	0.26"		
	15 m	MRS	22.6″	15.0″	12.2″	9.8″	6.5″	4.9"	3.5″	2.6"		
C43-3	500 m	AR	1.4″	0.94″	0.77″	0.62″	0.41″	0.31″	0.22"	0.16"		
	15 m	MRS	16.2″	10.8″	8.7″	7.0″	4.7"	3.5″	2.5″	1.9"		
C43-4	784 m	AR	0.92″	0.61″	0.50″	0.40″	0.27″	0.20"	0.14"	0.11"		
	15 m	MRS	11.2″	7.5″	6.1″	4.9″	3.3″	2.4"	1.7″	1.3"		
C43-5	1.4 km	AR	0.54″	0.36″	0.30″	0.24″	0.16″	0.12″	0.084"	0.063"		
	15 m	MRS	6.7″	4.5″	3.6″	2.9″	1.9″	1.5″	1.0"	0.77"		
C43-6	2.5 km	AR	0.31″	0.20″	0.16″	0.13″	0.089"	0.067"	0.047"	0.035″		
	15 m	MRS	4.1"	2.7″	2.2″	1.8″	1.2″	0.89″	0.63″	0.47"		
C43-7	3.6 km	AR	0.21″	0.14″	0.11″	0.092″	0.061″	0.046″	0.033"	0.024"		
	64 m	MRS	2.6″	1.7″	1.4"	1.1″	0.75″	0.56″	0.40"	0.30″		
C43-8	8.5 km	AR	0.096″	0.064″	0.052″	0.042″	0.028″	N/A	N/A	N/A		
	110 m	MRS	1.4"	0.95″	0.77″	0.62″	0.41"					
C43-9	13.9 km	AR										
	368 m	MRS		Not offered in Cycle 9								
C43-10	16.2 km	AR	Not offered in Cycle 8									
	244 m	MRS										

tart date	Configuration	Longest baseline	LST for best observing conditions	
2021 October 1	C-8	8.5 km	~ 22—10 h	
2021 October 20	C-7	3.6 km	~ 23—11 h	
2021 November 20	C-6	2.5 km	~ 1—13 h	
2021 December 1	C-5	1.4 km	~ 2—14 h	
2021 December 20	C-4	0.78 km	~ 4—15 h	
2022 January 10	C-3	0.50 km	~ 5—17 h	
2022 February 1	No	observations due to maintenar	nce	
2022 March 1	C-1	0.16 km	~ 8—21 h	
2022 March 20	C-2	0.31 km	~ 9—23 h	
2022 April 20	C-3	0.50 km	~ 11—0 h	
2022 May 20	C-4	0.78 km	~ 12—2 h	
2022 June 20	C-5	1.4 km	~ 13—4 h	
2022 July 11	C-6	2.5 km	~15—6 h	
2022 July 30	C-5	1.4 km	~17—7 h	
2022 August 20	C-4	0.78 km	~19—8 h	
2022 September 10	C-3	0.50 km	~20—9 h	

Basic Observing Modes

- Regular
 - Spectral line and continuum observations with the 12-m Array and the 7-m Array in all bands
 - Single field interferometry (all bands) and mosaics (Bands 3 to 9) with the 12-m Array and the 7-m Array
 - Single dish spectral line observations in Bands 3 to 8
- VLBI/pulsar in phase-up mode
- Target of Opportunity
- Large program
 - >50 hours for 12m array
 - >150 hours for 7m array

Polarization

I said spectral line polarimetry is also allowed for 12m mosaicking at the meeting, but it is not true. Only continuum linear polarimetry is allowed for 12m mosaicking. Sorry for confusion.

- 12m
 - Single pointing (within 1/3 of primary beam) of continuum and spectral line polarimetry are offered in Bands 3-7 for linear polarization.
 - Only continuum linear polarimetry for mosaicking.
 - Only single pointing within 1/10 of primary beam is offered in Bands 3-7 for circular polarization.
 - Systematic error (minimum detectable degree of polarization)
 - Linear polarization: 0.1-0.2% of peak Stokes I flux within 1/3 of PB in both continuum and spectral line observations. The error will be slightly worse at the outside of 1/3 PB for mosaicking case (TBA).
 - Circular polarization: 1.8% of peak Stokes I flux in both continuum and spectral resolution observations.
- 7m
 - Only single pointing (<1/3 PB) or multiple pointings (each of pointing with 1<3 PB FoV), linear polarization of continuum and spectral line is offered in Bands 3-7. No circular polarization, no mosaicking.
 - The systematic error is the same as the 12m case.
 - Data combination of 12m and 7m will not be supported.

VLBI

- VLBI observations in Bands 3 & 6 will be conducted using a "campaign mode" (acutual date will be set after the proposal review).
- New to Cycle 8 2021, VLBI observations will be permitted for science targets with correlated flux densities < 0.5 Jy through use of apassive phasingmode. The user must select a bright (>0.5 Jy) phase calibrator (phasor), ideally within 6 or 3 degrees of the science target.
- The proposers are required to enter a VLBI total time requested.
- ALMA's VLBI observing window in a given cycle will not exceed two weeks, so if multi-epoch observations are requested, they must fit within that time frame and the total time request must be the aggregate time of all observations.

Pulsar observations

- Users can propose pulsar observations with the aid of phase-up mode that works as "a large single dish".
- Only pulsar-science projects will be accepted for this mode.
- Both time domain data in PSRFITS format and standard interferometric data will be provided.
- Time resolution of time domain data is an integer multiple of 8 μs.

Solar Observations

- Proposals will be accepted for ALMA interferometric and Total Power observations.
 - Will be conducted only during the periods when the 12-m Array is in one of the allowed configurations for the requested band, namely C-1 to C-4 for Band 3, C-1 to C-3 for Band 5, C-1 to C-3 for Band 6, and C-1 to C-2 for Band 7.
 - The interferometric component of Solar observations will be conducted using a special combined array comprising both 12-m and 7-m antennas.
- Only proposals for continuum observations in Bands 3, 5, 6 and 7 will be accepted.
- Observations may be performed using dual linear polarization (XX, YY) or single polarization (XX) correlations; full polarization measurements are not currently offered

Q&A at the meeting

 Q: Is the passive phasing (target source flux < 500mJy) also applicable for spectral line VLBI?
A: Spectral line VLBI is not offered in Cycle 8 2021

A: Spectral line VLBI is not offered in Cycle 8 2021.

 Q: Is it possible to put 3 spws in one baseband and 1 spw in another baseband in the same sideband?
A: Yes, it is possible.