

ASTE science II: Galactic Center

Rei Enokiya (Keio University)

Kengo Tachihara, Hiroaki Yamamoto (Nagoya Univ.)

FY2021 ALMA/45m/ASTE Users Meeting (2021.12.16 on zoom)

The Advantage and mission

Clear sky

Sub-mm (band8, 10)

High J molecules and C

Cl survey for the Galactic sources is awaited

- Clumpy PDR model (e.g., Kosma-τ model; Störzer et al. 1996)
- FUV can penetrate inside (denser) region compared to the plane parallel model

The Galactic Center

- 1. Strong FUV field $(G_0 \sim 10^{3-5})^{\dagger}$
- 2. Molecular rich⁺
- 3. Strong magnetic field $(> 50 \mu G)^{\dagger\dagger}$

Properties of MCs

- dense : $n_{H2} \sim 10^4 \text{ /cm}^{3 \text{ +++}}$
- warm : 30 200 K⁺⁺⁺
- large dV: 15 50 km/s⁺⁺⁺

+ Wolfire et al. (1990)
++ Crocker et al. (2006), +++ Morris & Serabyn (1996)

Quintuplet cluster

1. Age of 4 Myr. Including 60 O-type stars (Figer +99,+04, red circle)

- **2. located in the Galactic Center**
- 3. The PDR (=Sickle) is clearly seen (red contours)

6

1. Age of 4 Myr. Including 60 O-type stars (Figer +99,+04, red circle)

- 2. located in the Galactic Center
- 3. The PDR (=Sickle) is clearly seen (red contours)

¹³CO2-1/1-0

High 13CO(2-1/10) values at some points

- 20 50 km/s: a associated cloud previously suggested⁺ (25 km/s cloud)
- 50 90 km/s: a shell-like cloud (80 km/s cloud)

+ Serabyn and Gusten (1991)

Pilot observations of atomic gas⁸

line	CI (1-0)	13CO(3-2)
frequency	492.16 GHz	330.58 GHz
Rx	ASTE Band8	DASH345
Ang. resolution	17"(=0.684 pc @GC)	22"(=0.885 pc @GC)
Vel. resolution	1.0 km/s	1.0 km/s ASTE
Obs. period	2019/8/21, 2019/9/24	2019/9/24

CI/13CO(1-0)

- \cdot High values in the vicinity of sickle (disk typical ~0.8 ; shimajiri+02 @Orion)
- Higher values toward the cluster

Atomic/molecular transition layer?

Any differences between the disk clouds and GC clouds ?

Physical state in the transition layer \mathbf{I}

Izumi+21

RCW38 (d=1.7 kpc)

The quintuplet has

higher column density of the transition layer

• lower ratios in the high column region

Thinner CI skin? Due to high density environment in the GC?

Enokiya+ in prep.

Interpretation based on Clumpy PDR

Quintuplet cluster

Summary

- Discovered two possible CO counterparts to the sickle (25, 80 km/s clouds)
- ASTE CI(1-0) observations revealed that the column density of the transition layer in the Quintuplet cluster is twice than typical value.

Future

- High resolution follow-up observations with ALMA, SKA
- \rightarrow to test if tiny clumps exist in the transition layer
- Follow-up CI(2-1) observations with ASTE
- → to compare densities of CO and CI through the LVG analysis of CI
- Velocity Analysis of CO, CI, and RRL

→ to reveal gas dynamics of molecular/atomic/ionized gas and their interrelations