

Joint Observation of Protoplanetary Disk with ALMA and Subaru

Jun Hashimoto (ABC/NAOJ/SOKENDAI),

Takayuki Muto (kogakuin University), Ruobing Dong (University of Victoria)

* I was asked to consider science cases for ALMA-Subaru joint proposal.

* If you are interested in Subaru SAC discussions, please visit Subaru SAC minute below (sorry for Japanese...).

https://www.subarutelescope.org/Science/SACM/SAC2020/20210713.pdf

What is a joint observation ?

- (Maybe) similar to ALMA-VLBI proposal.
- Require simultaneous obs or obs within one ALMA cycle (i.e., one year).
- Good science case: variability within one year.
- Not suitable science case for joint observation:
 - New exoplanet was found with Subaru !
 Follow-up observations with ALMA next year !
 - These can be done within current framework...

PDS70 planets detected by VLT/SPHERE (Haffert et al. 2019)

Follow-up with ALMA

ALMA dust continuum of PDS 70c (Benisty et al. 2021)

Emission lines (e.g., CO)

(3/11)

+optically thick gas (e.g., ¹²CO)

1-yr variability in the field of protoplanetary disk

- Related to the inner disk region at r <1 au, corresponding to dynamical time scale of <1 yr.
 - Low-velocity Disk wind/iet disk wind? Accretion flows Accretion shock Accretion onto star/plant Inner hot Dusty disk dust wall Hartmann et al. (2016) Inner emission ($T \approx 8,000$ K): Broad emission lines gas disk $(T \approx 10^4 \,\mathrm{K})$ some narrow lines: X-rays inner disk Dynamics in inner disks outer disk plane Marino et al. (2015) outer disk

(5/11)

Misaligned inner disks

Shadow cast by inner disks in scattered light image

a: misaligned angle between inner and outer disks

Optical image by VLT/SPHERE (α=70 deg) Shadows as two dips

Avenhaus et al. (2017)

Bohn et al. (2019)

Optical or NIR image gallery of shadows in outer disks

Possible origins of misaligned inner disk

rotation axis.

(6/11)

ALMA and NIR observations of disks with dips

Some objects show dips induced by shadows in both ALMA dust continuum and NIR images.

DoAr 44

HD 142527

Optical scattered light image

Avenhaus et al. (2017)

ALMA band 7 dust continuum image

(7/11)

ALMA traces dust-disk temperature ALMA band 7 ALMA band 3

Optical scattered light image

HD 142527

- Optical/NIR image traces shadows
- ALMA higher frequency (band 7) traces disk temperature
- ALMA lower frequecy (band 3) traces disk surface density

Variable shadows in the J1604 ring

Time

distanc

Shadow regions vary with ~1 week.

(9/11)

Comparison in ALMA and NIR images of J1604

Pinilla et al. (2018)

Mayama et al. (2018)

(10/11)

- Two dips in NIR, CO gas, and dust continuum images
 - Shadows would affect on temperature in the outer disk
- However, shadows vary within ~1 week.
- To understand effects of shadows on disk temperature, the joint program of ALMA and Subaru is preferable.

Summary (+ my personal opinion)

- A clear advantage for promoting science with multi-wavelengths
 - Suitable for science cases: the vicinity of central stars such as mass accretion onto star/planet and dynamics of inner disks at r <1 au from central stars
 - Just follow-up observations with an interval >1-yr is not suitable

• Possible disadvantage (?)

- Reduce observing time of Subaru alone and ALMA alone.
- Current Subaru allocates maximum 5% of total nights to non-Japanese researchers.
- If this upper limit is relaxed, Japanese Subaru users (including me) may feel uncomfortable...
- Hopefully, Subaru SAC keeps the 5% limit even after the joint program starts...